Loading…
In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer
In this present manuscript, zinc oxide (ZnO) nanoparticles embedded carboxymethyl cellulose (CMC) bionanocomposite were prepared by in situ grafting and the hydrophobic anticancer drug curcumin (Cur) was loaded into it. Structural, morphological, and physiochemical behavior of prepared curcumin-load...
Saved in:
Published in: | Journal of polymer research 2014-09, Vol.21 (9), p.1-9, Article 550 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this present manuscript, zinc oxide (ZnO) nanoparticles embedded carboxymethyl cellulose (CMC) bionanocomposite were prepared by in situ grafting and the hydrophobic anticancer drug curcumin (Cur) was loaded into it. Structural, morphological, and physiochemical behavior of prepared curcumin-loaded CMC/ZnO nanocomposites (NCs) were characterized by FTIR, XRD, SEM, TEM, TGA, and DTA. The drug entrapment efficiency was evaluated and the in vitro efficacy as anticancer drug delivery vehicle was analyzed. The potential toxicity of curcumin-loaded ZnO/CMC NCs (Cur/ZnO/CMC NCs) was studied by using L929 and MA104 cell lines via MTT assay. The cellular uptake study of Cur/ZnO/CMC NCs by normal (L929) and cancer (MA104) cells carried out by using ethanol extraction and by FACS analysis has been reported. The results of this investigation demonstrate that the nanomatrix synthesized can effectively deliver the anticancer drug curcumin, and hence appears to be a promising nanoformulation for anticancer therapy and other biomedical applications. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-014-0550-0 |