Loading…
Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts
We reported a universal route for synthesizing porous organic ligands (POLs) via solvothermal polymerization. The POLs were obtained quantitatively, showing high surface area, large pore volume, hierarchical porosity, and superior stability. The POL bearing a triphenylphosphine supported rhodium cat...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2014-10, Vol.50 (80), p.11844-11847 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We reported a universal route for synthesizing porous organic ligands (POLs) via solvothermal polymerization. The POLs were obtained quantitatively, showing high surface area, large pore volume, hierarchical porosity, and superior stability. The POL bearing a triphenylphosphine supported rhodium catalyst (Rh/POL-PPh3) exhibits high activity and excellent recyclability in 1-octene hydroformylation. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c4cc03884c |