Loading…

DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials

The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAM...

Full description

Saved in:
Bibliographic Details
Published in:Granular matter 2014-10, Vol.16 (5), p.641-655
Main Authors: Huang, X., Hanley, K. J., O’Sullivan, C., Kwok, C. Y., Wadee, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3
cites cdi_FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3
container_end_page 655
container_issue 5
container_start_page 641
container_title Granular matter
container_volume 16
creator Huang, X.
Hanley, K. J.
O’Sullivan, C.
Kwok, C. Y.
Wadee, M. A.
description The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAMMPS code. Initially isotropic samples were subjected to three-dimensional stress paths controlled by the intermediate stress ratio, b = [ ( σ 2 ′ - σ 3 ′ ) / ( σ 1 ′ - σ 3 ′ ) ] . Three types of simulation were performed: drained (with b -value specified), constant volume and constant mean effective stress. In contrast to previous DEM observations, the position of the critical state line is shown to depend on b . The data also show that, upon shearing, the dilatancy post-peak increases with increasing b , so that at a given mean effective stress, the void ratio at the critical state increases systematically with b . Four commonly-used three-dimensional failure criteria are shown to give a better match to the simulation data at the critical state than at the peak state. While the void ratio at critical state is shown to vary with b , the coordination number showed no dependency on b . The variation in critical state void ratios at the same p ′ value is apparently related to the directional fabric anisotropy which is clearly sensitive to b .
doi_str_mv 10.1007/s10035-014-0520-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629369253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3446673281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYsoOI7-AHcBN26qeTRJu5RxfMCIG12H2zSdydDHmKTC_HtTO6AIbu695H7ncMlJkkuCbwjG8tbHyniKSZZiTnEqjpIZyViWSsHE8WHmmJLT5Mz7LcaEF0TOknC_fEHQQbP31qO-RmFjkO3qZjCdNj8PwbjWVBaCQT444z1yEGyP-u4b0M4Gq6FJfRiR0mzg0_aDGw3WDrqhAYfauHIWGn-enNSxmYtDnyfvD8u3xVO6en18XtytUs1yGlKuJS8Yq0oMgmphKsw5J4LgnNamAlpnRVFWUoNkcaASl1kOGVQMNNYMajZPriffnes_BuODaq3XpmmgM_3gFRG0YKKgnEX06g-6jefHf4kUF4JmMuc0UmSitOu9d6ZWO2dbcHtFsBpzUFMOKuagxhyUiBo6aXxku7Vxv5z_FX0BgKaLpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566247852</pqid></control><display><type>article</type><title>DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials</title><source>Springer Nature</source><creator>Huang, X. ; Hanley, K. J. ; O’Sullivan, C. ; Kwok, C. Y. ; Wadee, M. A.</creator><creatorcontrib>Huang, X. ; Hanley, K. J. ; O’Sullivan, C. ; Kwok, C. Y. ; Wadee, M. A.</creatorcontrib><description>The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAMMPS code. Initially isotropic samples were subjected to three-dimensional stress paths controlled by the intermediate stress ratio, b = [ ( σ 2 ′ - σ 3 ′ ) / ( σ 1 ′ - σ 3 ′ ) ] . Three types of simulation were performed: drained (with b -value specified), constant volume and constant mean effective stress. In contrast to previous DEM observations, the position of the critical state line is shown to depend on b . The data also show that, upon shearing, the dilatancy post-peak increases with increasing b , so that at a given mean effective stress, the void ratio at the critical state increases systematically with b . Four commonly-used three-dimensional failure criteria are shown to give a better match to the simulation data at the critical state than at the peak state. While the void ratio at critical state is shown to vary with b , the coordination number showed no dependency on b . The variation in critical state void ratios at the same p ′ value is apparently related to the directional fabric anisotropy which is clearly sensitive to b .</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-014-0520-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Computer simulation ; Constants ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Failure ; Failure analysis ; Foundations ; Geoengineering ; Granular materials ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Original Paper ; Physics ; Physics and Astronomy ; Soft and Granular Matter ; Stress ratio ; Stress state ; Stresses ; Three dimensional ; Void ratio</subject><ispartof>Granular matter, 2014-10, Vol.16 (5), p.641-655</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3</citedby><cites>FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Hanley, K. J.</creatorcontrib><creatorcontrib>O’Sullivan, C.</creatorcontrib><creatorcontrib>Kwok, C. Y.</creatorcontrib><creatorcontrib>Wadee, M. A.</creatorcontrib><title>DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAMMPS code. Initially isotropic samples were subjected to three-dimensional stress paths controlled by the intermediate stress ratio, b = [ ( σ 2 ′ - σ 3 ′ ) / ( σ 1 ′ - σ 3 ′ ) ] . Three types of simulation were performed: drained (with b -value specified), constant volume and constant mean effective stress. In contrast to previous DEM observations, the position of the critical state line is shown to depend on b . The data also show that, upon shearing, the dilatancy post-peak increases with increasing b , so that at a given mean effective stress, the void ratio at the critical state increases systematically with b . Four commonly-used three-dimensional failure criteria are shown to give a better match to the simulation data at the critical state than at the peak state. While the void ratio at critical state is shown to vary with b , the coordination number showed no dependency on b . The variation in critical state void ratios at the same p ′ value is apparently related to the directional fabric anisotropy which is clearly sensitive to b .</description><subject>Complex Fluids and Microfluidics</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Granular materials</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Soft and Granular Matter</subject><subject>Stress ratio</subject><subject>Stress state</subject><subject>Stresses</subject><subject>Three dimensional</subject><subject>Void ratio</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYsoOI7-AHcBN26qeTRJu5RxfMCIG12H2zSdydDHmKTC_HtTO6AIbu695H7ncMlJkkuCbwjG8tbHyniKSZZiTnEqjpIZyViWSsHE8WHmmJLT5Mz7LcaEF0TOknC_fEHQQbP31qO-RmFjkO3qZjCdNj8PwbjWVBaCQT444z1yEGyP-u4b0M4Gq6FJfRiR0mzg0_aDGw3WDrqhAYfauHIWGn-enNSxmYtDnyfvD8u3xVO6en18XtytUs1yGlKuJS8Yq0oMgmphKsw5J4LgnNamAlpnRVFWUoNkcaASl1kOGVQMNNYMajZPriffnes_BuODaq3XpmmgM_3gFRG0YKKgnEX06g-6jefHf4kUF4JmMuc0UmSitOu9d6ZWO2dbcHtFsBpzUFMOKuagxhyUiBo6aXxku7Vxv5z_FX0BgKaLpw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Huang, X.</creator><creator>Hanley, K. J.</creator><creator>O’Sullivan, C.</creator><creator>Kwok, C. Y.</creator><creator>Wadee, M. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials</title><author>Huang, X. ; Hanley, K. J. ; O’Sullivan, C. ; Kwok, C. Y. ; Wadee, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Granular materials</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Soft and Granular Matter</topic><topic>Stress ratio</topic><topic>Stress state</topic><topic>Stresses</topic><topic>Three dimensional</topic><topic>Void ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Hanley, K. J.</creatorcontrib><creatorcontrib>O’Sullivan, C.</creatorcontrib><creatorcontrib>Kwok, C. Y.</creatorcontrib><creatorcontrib>Wadee, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, X.</au><au>Hanley, K. J.</au><au>O’Sullivan, C.</au><au>Kwok, C. Y.</au><au>Wadee, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>16</volume><issue>5</issue><spage>641</spage><epage>655</epage><pages>641-655</pages><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAMMPS code. Initially isotropic samples were subjected to three-dimensional stress paths controlled by the intermediate stress ratio, b = [ ( σ 2 ′ - σ 3 ′ ) / ( σ 1 ′ - σ 3 ′ ) ] . Three types of simulation were performed: drained (with b -value specified), constant volume and constant mean effective stress. In contrast to previous DEM observations, the position of the critical state line is shown to depend on b . The data also show that, upon shearing, the dilatancy post-peak increases with increasing b , so that at a given mean effective stress, the void ratio at the critical state increases systematically with b . Four commonly-used three-dimensional failure criteria are shown to give a better match to the simulation data at the critical state than at the peak state. While the void ratio at critical state is shown to vary with b , the coordination number showed no dependency on b . The variation in critical state void ratios at the same p ′ value is apparently related to the directional fabric anisotropy which is clearly sensitive to b .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-014-0520-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-5021
ispartof Granular matter, 2014-10, Vol.16 (5), p.641-655
issn 1434-5021
1434-7636
language eng
recordid cdi_proquest_miscellaneous_1629369253
source Springer Nature
subjects Complex Fluids and Microfluidics
Computer simulation
Constants
Discrete element method
Engineering Fluid Dynamics
Engineering Thermodynamics
Failure
Failure analysis
Foundations
Geoengineering
Granular materials
Heat and Mass Transfer
Hydraulics
Industrial Chemistry/Chemical Engineering
Materials Science
Original Paper
Physics
Physics and Astronomy
Soft and Granular Matter
Stress ratio
Stress state
Stresses
Three dimensional
Void ratio
title DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DEM%20analysis%20of%20the%20influence%20of%20the%20intermediate%20stress%20ratio%20on%20the%20critical-state%20behaviour%20of%20granular%20materials&rft.jtitle=Granular%20matter&rft.au=Huang,%20X.&rft.date=2014-10-01&rft.volume=16&rft.issue=5&rft.spage=641&rft.epage=655&rft.pages=641-655&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-014-0520-6&rft_dat=%3Cproquest_cross%3E3446673281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-5c75933db0a62c6ed0555161082feda2f499bd7ca7399b270b48a4ad3ac0c3af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566247852&rft_id=info:pmid/&rfr_iscdi=true