Loading…

A Mathematical Modeling to Predict the Cutting Forces in Microdrilling

In microdrilling, because of lower feed, the microdrill cutting edge radius is comparable to the chip thickness. The cutting edges therefore should be regarded as rounded edges, which results in a more complex cutting mechanism. Because of this, the macrodrilling thrust modeling is not suitable for...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2014-01, Vol.2014 (1)
Main Authors: Zhang, Haoqiang, Wang, Xibin, Pang, Siqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In microdrilling, because of lower feed, the microdrill cutting edge radius is comparable to the chip thickness. The cutting edges therefore should be regarded as rounded edges, which results in a more complex cutting mechanism. Because of this, the macrodrilling thrust modeling is not suitable for microdrilling. In this paper, a mathematical modeling to predict microdrilling thrust is developed, and the geometric characteristics of microdrill were considered in force models. The thrust is modeled in three parts: major cutting edges, secondary cutting edge, and indentation zone. Based on slip-line field theory, the major cutting edges and secondary cutting edge are divided into elements, and the elemental forces are determined by an oblique cutting model and an orthogonal model, respectively. The thrust modeling of the major cutting edges and second cutting edge includes two different kinds of processes: shearing and ploughing. The indentation zone is modeled as a rigid wedge. The force model is verified by comparing the predicted forces and the measured cutting forces.
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/543298