Loading…
Numerical Evaluation of Size Effect in Piezoelectric Micro-Beam with Linear Micromorphic Electroelastic Theory
The linear micromorphic electroelastic theory is proposed to solve bending problems of piezoelectric micro-beam in this paper. The basic governing equations with the boundary conditions are derived through the variational principle. Both the cantilever piezoelectric micro-beam subjected to a concent...
Saved in:
Published in: | Journal of mechanics 2014-10, Vol.30 (5), p.467-476 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The linear micromorphic electroelastic theory is proposed to solve bending problems of piezoelectric micro-beam in this paper. The basic governing equations with the boundary conditions are derived through the variational principle. Both the cantilever piezoelectric micro-beam subjected to a concentrated load at the free end and the simply supported micro-beam subjected to a distributed load are analyzed. It is found that the predictions from the micromorphic electroelastic theory are remarkably different from those from the classical theory when the micro-beam thickness is approximate or equal to the characteristic length scale parameter, but their difference is slight when the micro-beam thickness is much larger than the characteristic length scale parameter. As a result, it is concluded that the size effect is significant when the micro-beam thickness is comparable to the characteristic length scale parameter. |
---|---|
ISSN: | 1727-7191 1811-8216 |
DOI: | 10.1017/jmech.2014.25 |