Loading…

Thermal Effect on a CIGS Thin-Film Solar Cell P2 Layer by Using a UV Laser

This study used ANSYS simulation software for analyzing an ultraviolet (UV) (355 nm) laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to S i O2 layer, molybdenum electrode, CIGS absorbed la...

Full description

Saved in:
Bibliographic Details
Published in:Advances in Mechanical Engineering 2014-01, Vol.6, p.723136
Main Authors: Chen, Dyi-Cheng, Chen, Ming-Fei, Chen, Ming-Ren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study used ANSYS simulation software for analyzing an ultraviolet (UV) (355 nm) laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to S i O2 layer, molybdenum electrode, CIGS absorbed layer, CdS buffered layer, i-ZnO penetrate light layer, TCO front electrode, MgF resist reflected materials, andelectrode materials. The simulation and experimental results were compared to obtain a laser-delineated P2 laser with a low melting and vaporization temperature. According to the simulation results, the laser function time was 135 μs, the UV laser was 0.5 W, and the P2 layer thin films were removed. The experimental results indicated that the electrode pattern of the experiment was similar to that of the simulation result, and the laser process did not damage the base plate. The analysis results confirm that the laser apparatus is effective when applied to a stainless steel CIGS solar cell P2 layer.
ISSN:1687-8132
1687-8140
1687-8140
1687-8132
DOI:10.1155/2014/723136