Loading…

Prenatal exposure to polychlorinated biphenyls and their hydroxylated metabolites is associated with neurological functioning in 3-month-old infants

Polychlorinated biphenyls (PCBs) are environmental chemicals which are potentially toxic to the developing brain. Their hydroxylated metabolites (OH-PCBs) are suggested to be even more toxic. Knowledge about the health effects of prenatal OH-PCB exposure is limited. We aimed to determine whether pre...

Full description

Saved in:
Bibliographic Details
Published in:Toxicological sciences 2014-12, Vol.142 (2), p.455-462
Main Authors: Berghuis, Sietske A, Soechitram, Shalini D, Sauer, Pieter J J, Bos, Arend F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polychlorinated biphenyls (PCBs) are environmental chemicals which are potentially toxic to the developing brain. Their hydroxylated metabolites (OH-PCBs) are suggested to be even more toxic. Knowledge about the health effects of prenatal OH-PCB exposure is limited. We aimed to determine whether prenatal background exposure to PCBs and OH-PCBs is associated with neurological functioning in 3-month-old boys and girls. In a Dutch observational cohort study, we measured 10 PCBs and 6 OH-PCBs in maternal blood samples of 98 pregnant women. We assessed their infants neurologically with Touwen examination at 3 months and calculated an Optimality Score (OS, range 0-53, low-high optimality). We calculated correlation coefficients between compound levels and OS. Subsequently, we tested whether levels were associated with specific clusters and whether levels differed between infants with "normal" (dysfunction on ≤1 cluster) and "non-optimal" development (dysfunction on ≥2 clusters). The mean OS was 48 (range 44-52). Higher exposure to PCB-146 correlated significantly with higher OS (r = 0.209; p = 0.039). In boys, higher exposure to 4-OH-PCB-107 correlated with lower OS (r = -0.305; p = 0.030). Higher exposure to 9 PCBs and the sum of all PCBs was associated with better visuomotor and/or better sensorimotor function. Infants classified as "non-optimal" (n = 36) had significantly lower prenatal exposure to 6 PCBs and the sum of all PCBs (p 
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfu196