Loading…

Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer

Chimeric β-glucuronidase (GUS) gene expression in an efficient Agrobacterium-mediated transformation system utilising mesophyll cells of Petunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer...

Full description

Saved in:
Bibliographic Details
Published in:Planta 1997, Vol.201 (2), p.160-172
Main Authors: Villemont, E, Dubois, F, Sangwan, R.S, Vasseur, G, Bourgeois, Y, Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 172
container_issue 2
container_start_page 160
container_title Planta
container_volume 201
creator Villemont, E
Dubois, F
Sangwan, R.S
Vasseur, G
Bourgeois, Y
Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)
description Chimeric β-glucuronidase (GUS) gene expression in an efficient Agrobacterium-mediated transformation system utilising mesophyll cells of Petunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at G0—G1-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S—G2—M-phase populations (> 75%) and a concomitant decrease (down to 24%) in G0—G1-phase cells. Assays of GUS showed that maximum transformation (> 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late G1-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.
doi_str_mv 10.1007/BF01007700
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16321690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23384502</jstor_id><sourcerecordid>23384502</sourcerecordid><originalsourceid>FETCH-LOGICAL-f254t-74b2496415329f8f0a41070932d91fade8299341d6583054912e2c84952335a33</originalsourceid><addsrcrecordid>eNpFkE2LFDEQhoMoOI5ePApCDuKtNZ-TjrdxvxQWFV3PTW26MpOlO5lNMsL-E3-umZ0BT1XU-9ZTH4S85uwDZ8x8_HzJDtEw9oQsuJKiE0z1T8mCsZYzK_Vz8qKUO8aaaMyC_P2ZJqTJ07pFuk2lUofTRN2Da-UQH8vrTU634CrmsJ-7GccAFUe6wYg1OFozxOJTnqGGFA-sH1j3McAnin_CiNE9DoBIf3W7LRSkLsWa00RndFuIocy0tdOb7vzb-kTD_JI88zAVfHWKS_L78uLm7Et3_f3q69n6uvNCq9oZdSuUXSmupbC-9wwUZ6YdKkbLPYzYC2ul4uNK95JpZblA4XpltZBSg5RL8v7I3eV0v8dShzmUww8gYtqXga-k4CvLmvHdyQjFweTbni6UYZfDDPlhENoY3aBL8vZouys15f-ylL3S7KC_Oeoe0gCb3BDnF9Zcad738h9LI4ct</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16321690</pqid></control><display><type>article</type><title>Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer</title><source>Springer Nature</source><source>JSTOR Archival Journals</source><creator>Villemont, E ; Dubois, F ; Sangwan, R.S ; Vasseur, G ; Bourgeois, Y ; Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</creator><creatorcontrib>Villemont, E ; Dubois, F ; Sangwan, R.S ; Vasseur, G ; Bourgeois, Y ; Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</creatorcontrib><description>Chimeric β-glucuronidase (GUS) gene expression in an efficient Agrobacterium-mediated transformation system utilising mesophyll cells of Petunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at G0—G1-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S—G2—M-phase populations (&gt; 75%) and a concomitant decrease (down to 24%) in G0—G1-phase cells. Assays of GUS showed that maximum transformation (&gt; 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late G1-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/BF01007700</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>ADN ; AGROBACTERIUM ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Biotechnology ; Cell cycle ; Cell division ; Cell growth ; CELLS ; CELLULE ; CELULAS ; Cultured cells ; DNA ; EXPRESION GENICA ; EXPRESSION DES GENES ; FEUILLE ; Flow Cytometrie ; Fundamental and applied biological sciences. Psychology ; GENE EXPRESSION ; Genetic engineering ; Genetic engineering applications ; Genetic technics ; GENETIC TRANSFORMATION ; Genetics and breeding of economic plants ; genetischer Kontrollmechanismus ; HOJAS ; HOSTS ; HOTE ; HUESPEDES ; LEAVES ; MESOFILO ; MESOPHYLL ; Mesophyll cells ; MESOPHYLLE ; Methods. Procedures. Technologies ; NOYAU CELLULAIRE ; NUCLEO ; NUCLEUS ; PETUNIA ; Petunia hybrida ; Phytohormon ; Plant breeding: fundamental aspects and methodology ; Plant cells ; PLANT GROWTH SUBSTANCES ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants ; SUBSTANCE DE CROISSANCE VEGETALE ; SUSTANCIAS DE CRECIMIENTO VEGETAL ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; Transgenic animals and transgenic plants ; TRANSGENIC PLANTS ; Zellkern ; Zellzyklus</subject><ispartof>Planta, 1997, Vol.201 (2), p.160-172</ispartof><rights>Springer-Verlag 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23384502$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23384502$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2577552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Villemont, E</creatorcontrib><creatorcontrib>Dubois, F</creatorcontrib><creatorcontrib>Sangwan, R.S</creatorcontrib><creatorcontrib>Vasseur, G</creatorcontrib><creatorcontrib>Bourgeois, Y</creatorcontrib><creatorcontrib>Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</creatorcontrib><title>Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer</title><title>Planta</title><description>Chimeric β-glucuronidase (GUS) gene expression in an efficient Agrobacterium-mediated transformation system utilising mesophyll cells of Petunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at G0—G1-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S—G2—M-phase populations (&gt; 75%) and a concomitant decrease (down to 24%) in G0—G1-phase cells. Assays of GUS showed that maximum transformation (&gt; 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late G1-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.</description><subject>ADN</subject><subject>AGROBACTERIUM</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>CELLS</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>Cultured cells</subject><subject>DNA</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>FEUILLE</subject><subject>Flow Cytometrie</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE EXPRESSION</subject><subject>Genetic engineering</subject><subject>Genetic engineering applications</subject><subject>Genetic technics</subject><subject>GENETIC TRANSFORMATION</subject><subject>Genetics and breeding of economic plants</subject><subject>genetischer Kontrollmechanismus</subject><subject>HOJAS</subject><subject>HOSTS</subject><subject>HOTE</subject><subject>HUESPEDES</subject><subject>LEAVES</subject><subject>MESOFILO</subject><subject>MESOPHYLL</subject><subject>Mesophyll cells</subject><subject>MESOPHYLLE</subject><subject>Methods. Procedures. Technologies</subject><subject>NOYAU CELLULAIRE</subject><subject>NUCLEO</subject><subject>NUCLEUS</subject><subject>PETUNIA</subject><subject>Petunia hybrida</subject><subject>Phytohormon</subject><subject>Plant breeding: fundamental aspects and methodology</subject><subject>Plant cells</subject><subject>PLANT GROWTH SUBSTANCES</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants</subject><subject>SUBSTANCE DE CROISSANCE VEGETALE</subject><subject>SUSTANCIAS DE CRECIMIENTO VEGETAL</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>Transgenic animals and transgenic plants</subject><subject>TRANSGENIC PLANTS</subject><subject>Zellkern</subject><subject>Zellzyklus</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFkE2LFDEQhoMoOI5ePApCDuKtNZ-TjrdxvxQWFV3PTW26MpOlO5lNMsL-E3-umZ0BT1XU-9ZTH4S85uwDZ8x8_HzJDtEw9oQsuJKiE0z1T8mCsZYzK_Vz8qKUO8aaaMyC_P2ZJqTJ07pFuk2lUofTRN2Da-UQH8vrTU634CrmsJ-7GccAFUe6wYg1OFozxOJTnqGGFA-sH1j3McAnin_CiNE9DoBIf3W7LRSkLsWa00RndFuIocy0tdOb7vzb-kTD_JI88zAVfHWKS_L78uLm7Et3_f3q69n6uvNCq9oZdSuUXSmupbC-9wwUZ6YdKkbLPYzYC2ul4uNK95JpZblA4XpltZBSg5RL8v7I3eV0v8dShzmUww8gYtqXga-k4CvLmvHdyQjFweTbni6UYZfDDPlhENoY3aBL8vZouys15f-ylL3S7KC_Oeoe0gCb3BDnF9Zcad738h9LI4ct</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Villemont, E</creator><creator>Dubois, F</creator><creator>Sangwan, R.S</creator><creator>Vasseur, G</creator><creator>Bourgeois, Y</creator><creator>Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</creator><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>1997</creationdate><title>Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer</title><author>Villemont, E ; Dubois, F ; Sangwan, R.S ; Vasseur, G ; Bourgeois, Y ; Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f254t-74b2496415329f8f0a41070932d91fade8299341d6583054912e2c84952335a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ADN</topic><topic>AGROBACTERIUM</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>CELLS</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>Cultured cells</topic><topic>DNA</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>FEUILLE</topic><topic>Flow Cytometrie</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE EXPRESSION</topic><topic>Genetic engineering</topic><topic>Genetic engineering applications</topic><topic>Genetic technics</topic><topic>GENETIC TRANSFORMATION</topic><topic>Genetics and breeding of economic plants</topic><topic>genetischer Kontrollmechanismus</topic><topic>HOJAS</topic><topic>HOSTS</topic><topic>HOTE</topic><topic>HUESPEDES</topic><topic>LEAVES</topic><topic>MESOFILO</topic><topic>MESOPHYLL</topic><topic>Mesophyll cells</topic><topic>MESOPHYLLE</topic><topic>Methods. Procedures. Technologies</topic><topic>NOYAU CELLULAIRE</topic><topic>NUCLEO</topic><topic>NUCLEUS</topic><topic>PETUNIA</topic><topic>Petunia hybrida</topic><topic>Phytohormon</topic><topic>Plant breeding: fundamental aspects and methodology</topic><topic>Plant cells</topic><topic>PLANT GROWTH SUBSTANCES</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants</topic><topic>SUBSTANCE DE CROISSANCE VEGETALE</topic><topic>SUSTANCIAS DE CRECIMIENTO VEGETAL</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>Transgenic animals and transgenic plants</topic><topic>TRANSGENIC PLANTS</topic><topic>Zellkern</topic><topic>Zellzyklus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villemont, E</creatorcontrib><creatorcontrib>Dubois, F</creatorcontrib><creatorcontrib>Sangwan, R.S</creatorcontrib><creatorcontrib>Vasseur, G</creatorcontrib><creatorcontrib>Bourgeois, Y</creatorcontrib><creatorcontrib>Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villemont, E</au><au>Dubois, F</au><au>Sangwan, R.S</au><au>Vasseur, G</au><au>Bourgeois, Y</au><au>Sangwan-Norreel, B.S. (Universite de Picardie Jules Verne, Amiens (France). Faculte des Sciences, Lab. Androgenese et Biotechnologie)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer</atitle><jtitle>Planta</jtitle><date>1997</date><risdate>1997</risdate><volume>201</volume><issue>2</issue><spage>160</spage><epage>172</epage><pages>160-172</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Chimeric β-glucuronidase (GUS) gene expression in an efficient Agrobacterium-mediated transformation system utilising mesophyll cells of Petunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at G0—G1-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S—G2—M-phase populations (&gt; 75%) and a concomitant decrease (down to 24%) in G0—G1-phase cells. Assays of GUS showed that maximum transformation (&gt; 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late G1-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><doi>10.1007/BF01007700</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 1997, Vol.201 (2), p.160-172
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_16321690
source Springer Nature; JSTOR Archival Journals
subjects ADN
AGROBACTERIUM
Agronomy. Soil science and plant productions
Biological and medical sciences
Biotechnology
Cell cycle
Cell division
Cell growth
CELLS
CELLULE
CELULAS
Cultured cells
DNA
EXPRESION GENICA
EXPRESSION DES GENES
FEUILLE
Flow Cytometrie
Fundamental and applied biological sciences. Psychology
GENE EXPRESSION
Genetic engineering
Genetic engineering applications
Genetic technics
GENETIC TRANSFORMATION
Genetics and breeding of economic plants
genetischer Kontrollmechanismus
HOJAS
HOSTS
HOTE
HUESPEDES
LEAVES
MESOFILO
MESOPHYLL
Mesophyll cells
MESOPHYLLE
Methods. Procedures. Technologies
NOYAU CELLULAIRE
NUCLEO
NUCLEUS
PETUNIA
Petunia hybrida
Phytohormon
Plant breeding: fundamental aspects and methodology
Plant cells
PLANT GROWTH SUBSTANCES
PLANTAS TRANSGENICAS
PLANTE TRANSGENIQUE
Plants
SUBSTANCE DE CROISSANCE VEGETALE
SUSTANCIAS DE CRECIMIENTO VEGETAL
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
Transgenic animals and transgenic plants
TRANSGENIC PLANTS
Zellkern
Zellzyklus
title Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20host%20cell%20cycle%20in%20the%20Agrobacterium-mediated%20genetic%20transformation%20of%20Petunia:%20evidence%20of%20an%20S-phase%20control%20mechanism%20for%20T-DNA%20transfer&rft.jtitle=Planta&rft.au=Villemont,%20E&rft.date=1997&rft.volume=201&rft.issue=2&rft.spage=160&rft.epage=172&rft.pages=160-172&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/BF01007700&rft_dat=%3Cjstor_proqu%3E23384502%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f254t-74b2496415329f8f0a41070932d91fade8299341d6583054912e2c84952335a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16321690&rft_id=info:pmid/&rft_jstor_id=23384502&rfr_iscdi=true