Loading…

Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study

Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of human hypertension 2015-01, Vol.29 (1), p.33-39
Main Authors: Smith, A J, Malan, L, Uys, A S, Malan, N T, Harvey, B H, Ziemssen, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml −1 ) gender groups. BDNF values (0.86–1.98 ng ml −1 ) were substantially lower than reference ranges (6.97–42.6 ng ml −1 ) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA ( r =−0.17; P =0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women.
ISSN:0950-9240
1476-5527
DOI:10.1038/jhh.2014.39