Loading…

Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process

The present study was performed to sonochemically synthesize GdxZn1−xO (x=0–0.1) nanoparticles for sonocatalysis of Acid Orange 7 (AO7) in an aqueous medium. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoele...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics sonochemistry 2015-03, Vol.23, p.219-230
Main Authors: Khataee, Alireza, Soltani, Reza Darvishi Cheshmeh, Karimi, Atefeh, Joo, Sang Woo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was performed to sonochemically synthesize GdxZn1−xO (x=0–0.1) nanoparticles for sonocatalysis of Acid Orange 7 (AO7) in an aqueous medium. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis confirmed proper synthesis of Gd-doped sonocatalyst. 5% Gd-doped ZnO nanoparticles with band gap of 2.8eV exhibited the highest sonocatalytic decolorization efficiency of 90% at reaction time of 90min. The effects of initial dye concentration and sonocatalyst dosage on decolorization efficiency were evaluated. In the presence of sodium sulfate, sodium carbonate and sodium chloride the decolorization efficiency decreased from 90 to 78, 65 and 56%, respectively. Among various enhancers, the addition of potassium periodate improved the decolorization efficiency from 90 to 100%. The highest decolorization efficiency was obtained at pH value of 6.34 (90%). The decolorization efficiency decreased only 6% after 4 repeated runs. Therefore, Gd-doped ZnO nanoparticles can be used as a promising catalyst for degradation of organic pollutants with great reusability potential.
ISSN:1350-4177
1873-2828
DOI:10.1016/j.ultsonch.2014.08.023