Loading…

Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA),...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2015-01, Vol.72, p.790-796
Main Authors: Pakkanen, Kirsi I, Madsen, Jan B, Lee, Seunghwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA), enzyme-linked immunosorbent assay (EIA), and enzyme-linked lectin assay (ELLA). The conformation and hydrodynamic diameter of highly purified BSM molecules, as characterized by circular dichroism (CD) spectroscopy and dynamic light scattering (DLS), respectively, showed a slight, yet gradual coiling and compaction in response to the increase in BSM concentration in bulk solution. Adsorbed masses of BSM onto hydrophobic surface, as probe by BCA, showed a continuously increasing trend up to 2mg/mL. But, the signals from EIA and ELLA, which probe the concentration of available unglycosylated C-terminals and the central glycosylated regions, respectively, showed complicated non-linear responses with increasing surface concentration. The results from this study support the conventional amphiphilic, triblock model of BSM in the adsorption onto hydrophobic surface from aqueous solution. The biomolecular probe-based approaches employed in this study, however, provided further details on the conformational changes of BSM on surface, in particular the accessibility of glycosylated and unglycosylated domains with increasing surface concentration.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2014.09.035