Loading…
Biocompatible Ionic Liquid–Biopolymer Electrolyte-Enabled Thin and Compact Magnesium–Air Batteries
With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization diff...
Saved in:
Published in: | ACS applied materials & interfaces 2014-12, Vol.6 (23), p.21110-21117 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium–air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole–para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10–3 S cm–1. The assembled battery delivers a maximum volumetric power density of 3.9 W L–1, which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium–air battery may pave the way to a future generation of implantable power sources. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am505985z |