Loading…

Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development

RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In th...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and genomics : MGG 2014-12, Vol.289 (6), p.1157-1169
Main Authors: Gong, Zu-Kang, Wang, Shuang-Jie, Huang, Yong-Qi, Zhao, Rui-Qiang, Zhu, Qi-Fang, Lin, Wen-Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta Cₜmethod and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-014-0877-6