Loading…
Rational design of inhibitors of the bacterial cell wall synthetic enzyme GlmU using virtual screening and lead-hopping
[Display omitted] An aminoquinazoline series targeting the essential bacterial enzyme GlmU (uridyltransferase) were previously reported (Biochem. J.2012, 446, 405). In this study, we further explored SAR through a combination of traditional medicinal chemistry and structure-based drug design, result...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2014-11, Vol.22 (21), p.6256-6269 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
An aminoquinazoline series targeting the essential bacterial enzyme GlmU (uridyltransferase) were previously reported (Biochem. J.2012, 446, 405). In this study, we further explored SAR through a combination of traditional medicinal chemistry and structure-based drug design, resulting in a novel scaffold (benzamide) with selectivity against protein kinases. Virtual screening identified fragments that could be fused into the core scaffold, exploiting additional binding interactions and thus improving potency. These efforts resulted in a hybrid compound with target potency increased by a 1000-fold, while maintaining selectivity against selected protein kinases and an improved level of solubility and protein binding. Despite these significant improvements no significant antibacterial activity was yet observed within this class. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2014.08.017 |