Loading…
Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions
Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adapta...
Saved in:
Published in: | Biomacromolecules 2014-10, Vol.15 (10), p.3696-3705 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3 |
container_end_page | 3705 |
container_issue | 10 |
container_start_page | 3696 |
container_title | Biomacromolecules |
container_volume | 15 |
creator | Bouxsein, Nathan F Bachand, George D |
description | Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts. |
doi_str_mv | 10.1021/bm500988r |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635034456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635034456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</originalsourceid><addsrcrecordid>eNqN0EtLxDAQB_Agiu-DX0B6EfRQzTvNUdcnKAo-riVNJxppU03aBb-9XXfViwchkEB-M8P8Edoh-JBgSo6qVmCsiyIuoXUiqMy5xHT56y1ypbRaQxspveIRMS5W0RoVRFJF1Tp6uvfhuYHs3DemhdBnJ_Bipr6LWeeyG29j1w_V0EDKfMj6F8juIiQIFmb_x3UNdXbqp6aZlU66IfQQfRfSFlpxpkmwvbg30eP52cPkMr--vbiaHF_nhnPe54KzwtXSaMcqSYwUuGCaK62pkKJyHJyUTDvusAKhsLaF1pZRLGitCk4s20T7875vsXsfIPVl65OFpjEBuiGVRDKBGedC_oOS8WjO6UgP5nRcP6UIrnyLvjXxoyS4nCVe_iQ-2t1F26Fqof6R3xGPYG8BTLKmcdEE69OvKzQtJCa_zthUvnZDDGNwfwz8BHgxkic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611619442</pqid></control><display><type>article</type><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bouxsein, Nathan F ; Bachand, George D</creator><creatorcontrib>Bouxsein, Nathan F ; Bachand, George D</creatorcontrib><description>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm500988r</identifier><identifier>PMID: 25162727</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biological Transport - physiology ; Cell structures and functions ; Cytoskeleton, cytoplasm. Intracellular movements ; Eukaryotic Cells - metabolism ; Eukaryotic Cells - physiology ; Fundamental and applied biological sciences. Psychology ; Ions - metabolism ; Kinesin - metabolism ; Microtubules - metabolism ; Mitosis - physiology ; Molecular and cellular biology ; Polymerization</subject><ispartof>Biomacromolecules, 2014-10, Vol.15 (10), p.3696-3705</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</citedby><cites>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928601$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25162727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouxsein, Nathan F</creatorcontrib><creatorcontrib>Bachand, George D</creatorcontrib><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</description><subject>Biological and medical sciences</subject><subject>Biological Transport - physiology</subject><subject>Cell structures and functions</subject><subject>Cytoskeleton, cytoplasm. Intracellular movements</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Eukaryotic Cells - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ions - metabolism</subject><subject>Kinesin - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mitosis - physiology</subject><subject>Molecular and cellular biology</subject><subject>Polymerization</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLxDAQB_Agiu-DX0B6EfRQzTvNUdcnKAo-riVNJxppU03aBb-9XXfViwchkEB-M8P8Edoh-JBgSo6qVmCsiyIuoXUiqMy5xHT56y1ypbRaQxspveIRMS5W0RoVRFJF1Tp6uvfhuYHs3DemhdBnJ_Bipr6LWeeyG29j1w_V0EDKfMj6F8juIiQIFmb_x3UNdXbqp6aZlU66IfQQfRfSFlpxpkmwvbg30eP52cPkMr--vbiaHF_nhnPe54KzwtXSaMcqSYwUuGCaK62pkKJyHJyUTDvusAKhsLaF1pZRLGitCk4s20T7875vsXsfIPVl65OFpjEBuiGVRDKBGedC_oOS8WjO6UgP5nRcP6UIrnyLvjXxoyS4nCVe_iQ-2t1F26Fqof6R3xGPYG8BTLKmcdEE69OvKzQtJCa_zthUvnZDDGNwfwz8BHgxkic</recordid><startdate>20141013</startdate><enddate>20141013</enddate><creator>Bouxsein, Nathan F</creator><creator>Bachand, George D</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141013</creationdate><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><author>Bouxsein, Nathan F ; Bachand, George D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biological Transport - physiology</topic><topic>Cell structures and functions</topic><topic>Cytoskeleton, cytoplasm. Intracellular movements</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Eukaryotic Cells - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ions - metabolism</topic><topic>Kinesin - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mitosis - physiology</topic><topic>Molecular and cellular biology</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouxsein, Nathan F</creatorcontrib><creatorcontrib>Bachand, George D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouxsein, Nathan F</au><au>Bachand, George D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2014-10-13</date><risdate>2014</risdate><volume>15</volume><issue>10</issue><spage>3696</spage><epage>3705</epage><pages>3696-3705</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25162727</pmid><doi>10.1021/bm500988r</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2014-10, Vol.15 (10), p.3696-3705 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1635034456 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Biological and medical sciences Biological Transport - physiology Cell structures and functions Cytoskeleton, cytoplasm. Intracellular movements Eukaryotic Cells - metabolism Eukaryotic Cells - physiology Fundamental and applied biological sciences. Psychology Ions - metabolism Kinesin - metabolism Microtubules - metabolism Mitosis - physiology Molecular and cellular biology Polymerization |
title | Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Filament%20Behavior%20of%20Microtubules%20in%20the%20Presence%20of%20Added%20Divalent%20Counterions&rft.jtitle=Biomacromolecules&rft.au=Bouxsein,%20Nathan%20F&rft.date=2014-10-13&rft.volume=15&rft.issue=10&rft.spage=3696&rft.epage=3705&rft.pages=3696-3705&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm500988r&rft_dat=%3Cproquest_cross%3E1635034456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1611619442&rft_id=info:pmid/25162727&rfr_iscdi=true |