Loading…

Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions

Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adapta...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2014-10, Vol.15 (10), p.3696-3705
Main Authors: Bouxsein, Nathan F, Bachand, George D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3
cites cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3
container_end_page 3705
container_issue 10
container_start_page 3696
container_title Biomacromolecules
container_volume 15
creator Bouxsein, Nathan F
Bachand, George D
description Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.
doi_str_mv 10.1021/bm500988r
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635034456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635034456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</originalsourceid><addsrcrecordid>eNqN0EtLxDAQB_Agiu-DX0B6EfRQzTvNUdcnKAo-riVNJxppU03aBb-9XXfViwchkEB-M8P8Edoh-JBgSo6qVmCsiyIuoXUiqMy5xHT56y1ypbRaQxspveIRMS5W0RoVRFJF1Tp6uvfhuYHs3DemhdBnJ_Bipr6LWeeyG29j1w_V0EDKfMj6F8juIiQIFmb_x3UNdXbqp6aZlU66IfQQfRfSFlpxpkmwvbg30eP52cPkMr--vbiaHF_nhnPe54KzwtXSaMcqSYwUuGCaK62pkKJyHJyUTDvusAKhsLaF1pZRLGitCk4s20T7875vsXsfIPVl65OFpjEBuiGVRDKBGedC_oOS8WjO6UgP5nRcP6UIrnyLvjXxoyS4nCVe_iQ-2t1F26Fqof6R3xGPYG8BTLKmcdEE69OvKzQtJCa_zthUvnZDDGNwfwz8BHgxkic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611619442</pqid></control><display><type>article</type><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bouxsein, Nathan F ; Bachand, George D</creator><creatorcontrib>Bouxsein, Nathan F ; Bachand, George D</creatorcontrib><description>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm500988r</identifier><identifier>PMID: 25162727</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biological Transport - physiology ; Cell structures and functions ; Cytoskeleton, cytoplasm. Intracellular movements ; Eukaryotic Cells - metabolism ; Eukaryotic Cells - physiology ; Fundamental and applied biological sciences. Psychology ; Ions - metabolism ; Kinesin - metabolism ; Microtubules - metabolism ; Mitosis - physiology ; Molecular and cellular biology ; Polymerization</subject><ispartof>Biomacromolecules, 2014-10, Vol.15 (10), p.3696-3705</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</citedby><cites>FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28928601$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25162727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouxsein, Nathan F</creatorcontrib><creatorcontrib>Bachand, George D</creatorcontrib><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</description><subject>Biological and medical sciences</subject><subject>Biological Transport - physiology</subject><subject>Cell structures and functions</subject><subject>Cytoskeleton, cytoplasm. Intracellular movements</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Eukaryotic Cells - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ions - metabolism</subject><subject>Kinesin - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mitosis - physiology</subject><subject>Molecular and cellular biology</subject><subject>Polymerization</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLxDAQB_Agiu-DX0B6EfRQzTvNUdcnKAo-riVNJxppU03aBb-9XXfViwchkEB-M8P8Edoh-JBgSo6qVmCsiyIuoXUiqMy5xHT56y1ypbRaQxspveIRMS5W0RoVRFJF1Tp6uvfhuYHs3DemhdBnJ_Bipr6LWeeyG29j1w_V0EDKfMj6F8juIiQIFmb_x3UNdXbqp6aZlU66IfQQfRfSFlpxpkmwvbg30eP52cPkMr--vbiaHF_nhnPe54KzwtXSaMcqSYwUuGCaK62pkKJyHJyUTDvusAKhsLaF1pZRLGitCk4s20T7875vsXsfIPVl65OFpjEBuiGVRDKBGedC_oOS8WjO6UgP5nRcP6UIrnyLvjXxoyS4nCVe_iQ-2t1F26Fqof6R3xGPYG8BTLKmcdEE69OvKzQtJCa_zthUvnZDDGNwfwz8BHgxkic</recordid><startdate>20141013</startdate><enddate>20141013</enddate><creator>Bouxsein, Nathan F</creator><creator>Bachand, George D</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141013</creationdate><title>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</title><author>Bouxsein, Nathan F ; Bachand, George D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biological Transport - physiology</topic><topic>Cell structures and functions</topic><topic>Cytoskeleton, cytoplasm. Intracellular movements</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Eukaryotic Cells - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ions - metabolism</topic><topic>Kinesin - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mitosis - physiology</topic><topic>Molecular and cellular biology</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouxsein, Nathan F</creatorcontrib><creatorcontrib>Bachand, George D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouxsein, Nathan F</au><au>Bachand, George D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2014-10-13</date><risdate>2014</risdate><volume>15</volume><issue>10</issue><spage>3696</spage><epage>3705</epage><pages>3696-3705</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25162727</pmid><doi>10.1021/bm500988r</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2014-10, Vol.15 (10), p.3696-3705
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_1635034456
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biological and medical sciences
Biological Transport - physiology
Cell structures and functions
Cytoskeleton, cytoplasm. Intracellular movements
Eukaryotic Cells - metabolism
Eukaryotic Cells - physiology
Fundamental and applied biological sciences. Psychology
Ions - metabolism
Kinesin - metabolism
Microtubules - metabolism
Mitosis - physiology
Molecular and cellular biology
Polymerization
title Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Filament%20Behavior%20of%20Microtubules%20in%20the%20Presence%20of%20Added%20Divalent%20Counterions&rft.jtitle=Biomacromolecules&rft.au=Bouxsein,%20Nathan%20F&rft.date=2014-10-13&rft.volume=15&rft.issue=10&rft.spage=3696&rft.epage=3705&rft.pages=3696-3705&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm500988r&rft_dat=%3Cproquest_cross%3E1635034456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-5438fd6a9f3b61a65083947992565bf4ef6639f4f07e5709c899c32052d7841c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1611619442&rft_id=info:pmid/25162727&rfr_iscdi=true