Loading…
Electronic properties and Schottky barriers at ZnO-metal interfaces from first principles
First principles calculations were performed to study the interface electronic structure and the Schottky barrier heights (SBHs) of ZnO-metal interfaces. Different kinds of metals were considered with different chemistries on the polar (0 0 0 1) and (0 0 0 ) ZnO surfaces. The projection of the densi...
Saved in:
Published in: | Journal of physics. Condensed matter 2015-01, Vol.27 (1), p.015006-015006 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First principles calculations were performed to study the interface electronic structure and the Schottky barrier heights (SBHs) of ZnO-metal interfaces. Different kinds of metals were considered with different chemistries on the polar (0 0 0 1) and (0 0 0 ) ZnO surfaces. The projection of the density of states on the atomic orbitals of the interface atoms reveals that two kinds of interface electronic states appear: states due to the chemical bonding which appear at well defined energies and conventional metal-induced gap states associated with a smooth density of states in the bulk ZnO band gap region. The relative weight and distribution of the two classes of states depend on both the ZnO substrate termination and on the metal species. SBHs are found to be very sensitive to the specific interface chemical bonding. In particular, it is possible to note the occurrence of either Schottky barriers or Ohmic contacts. Our results have been compared with experiments and with available phenomenological theories, which estimate the SBH from few characteristic material parameters. Finally, the electronic and structural contributions to the SBH have been singled out and related to the different charge transfers occurring at the different interfaces. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/27/1/015006 |