Loading…

tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa

Tropical lowland forests are characterized by humid climate conditions with interannual variations in amount of precipitation, length of dry season, and relative humidity. The African tree species, Terminalia superba Engl. & Diels has a large distribution area and potentially incorporates these...

Full description

Saved in:
Bibliographic Details
Published in:Trees (Berlin, West) West), 2013-10, Vol.27 (5), p.1225-1238
Main Authors: De Ridder, Maaike, Trouet, Valerie, Van den Bulcke, Jan, Hubau, Wannes, Van Acker, Joris, Beeckman, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropical lowland forests are characterized by humid climate conditions with interannual variations in amount of precipitation, length of dry season, and relative humidity. The African tree species, Terminalia superba Engl. & Diels has a large distribution area and potentially incorporates these variations in its tree rings. Tree ring analysis was performed on 60 plantation trees (increment cores) and 41 natural trees (stem disks) from Ivory Coast and the Congolese Mayombe Forest. Natural forests and old plantations (50–55 years) showed similar growth patterns. Regional chronologies were developed for the two sample regions and showed a long-distance relationship for the period 1959–2008. Growth in the Mayombe was associated with early rainy season precipitation, but no relation was found between tree growth and precipitation in Ivory Coast. Congolese trees possibly show a higher climate-sensitivity than Ivorian trees, because precipitation in the Mayombe is more limiting, and Congolese T. superba trees are found closer to the margins of their distribution. Likewise, tree growth in the Mayombe was also influenced by the SSTs of the Gulf of Guinea and the South Atlantic Ocean during the early rainy season. However, tree growth was influenced by ENSO in both regions. In the Mayombe, La Niña years were associated with stronger tree growth whereas in Ivory Coast, El Niño years corresponded with stronger tree growth. The presented relation between ENSO, precipitation and tree growth is original for equatorial African forests, suggesting an influence of global climate variability on tree growth.
ISSN:0931-1890
1432-2285
DOI:10.1007/s00468-013-0871-3