Loading…
Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification
Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contribu...
Saved in:
Published in: | Biochemical pharmacology 2013-10, Vol.86 (7), p.872-887 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33 |
container_end_page | 887 |
container_issue | 7 |
container_start_page | 872 |
container_title | Biochemical pharmacology |
container_volume | 86 |
creator | Chen, Chih-Cheng Chu, Chia-Bao Liu, Ko-Jiunn Huang, Chi-Ying F. Chang, Jang-Yang Pan, Wen-Yu Chen, Huang-Hui Cheng, Yun-Hsia Lee, Kuan-Der Chen, Miao-Fen Kuo, Ching-Chuan Chen, Li-Tzong |
description | Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers. |
doi_str_mv | 10.1016/j.bcp.2013.07.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639991088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295213004772</els_id><sourcerecordid>1435848080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhAdggL9kktePEcWBVjWBaMQKJDmvLsY-nHiX21E7Q9MF4PxxNYQkrX_RfdM6H0FtKSkoovzqUvT6WFaGsJG1JquYZWlHRsqLquHiOVoQQnu9NdYFepXRYnoLTl-iiYh1jTPAV-rUBDxhOxwgpueDxMQbrBuf32IaIlVfDY3IJK_0wuwgGh5Ma3HFQk_M4e1yalJ-wVXoKMeH8eT-PyuO9SlN0GmsVtfNhVHh3t7kp7hjWMAzpA97dA45hABwsvt0WHCe3z2VLsfIGf422urr-8p2usTrlfmfAT846nYuDf41eWDUkePN0XqIfnz_t1jfF9tvmdn29LXTdVFNR11pZbkXTGdU2pKt7w1XLiWl5I7hubNVZ25oWqG1BiabtK91nA9NWgAbGLtH7c27eysMMaZKjS8sAykOYk6ScdV1HiRD_l9asEbUggmQpPUt1DClFsPIY3ajio6RELmDlQWawcgErSSsz2Ox59xQ_9yOYv44_JLPg41kAeR8_HUSZtAOvwWRsepImuH_E_wbDOrY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435848080</pqid></control><display><type>article</type><title>Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Chih-Cheng ; Chu, Chia-Bao ; Liu, Ko-Jiunn ; Huang, Chi-Ying F. ; Chang, Jang-Yang ; Pan, Wen-Yu ; Chen, Huang-Hui ; Cheng, Yun-Hsia ; Lee, Kuan-Der ; Chen, Miao-Fen ; Kuo, Ching-Chuan ; Chen, Li-Tzong</creator><creatorcontrib>Chen, Chih-Cheng ; Chu, Chia-Bao ; Liu, Ko-Jiunn ; Huang, Chi-Ying F. ; Chang, Jang-Yang ; Pan, Wen-Yu ; Chen, Huang-Hui ; Cheng, Yun-Hsia ; Lee, Kuan-Der ; Chen, Miao-Fen ; Kuo, Ching-Chuan ; Chen, Li-Tzong</creatorcontrib><description>Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2013.07.025</identifier><identifier>PMID: 23933386</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>20-Hydroxysteroid Dehydrogenases - genetics ; 20-Hydroxysteroid Dehydrogenases - metabolism ; Acquired resistance ; Antineoplastic Agents - pharmacology ; Antioxidant Response Elements - drug effects ; Antioxidant Response Elements - genetics ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Humans ; IL-6 signaling ; Interleukin-6 - metabolism ; Interleukin-6 - pharmacology ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Nrf2/AKR1C axis ; Organoplatinum Compounds - pharmacology ; Oxaliplatin ; RNA, Small Interfering ; Signal Transduction - drug effects ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - genetics ; Stomach Neoplasms - metabolism ; Tumor Cells, Cultured</subject><ispartof>Biochemical pharmacology, 2013-10, Vol.86 (7), p.872-887</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33</citedby><cites>FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23933386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chih-Cheng</creatorcontrib><creatorcontrib>Chu, Chia-Bao</creatorcontrib><creatorcontrib>Liu, Ko-Jiunn</creatorcontrib><creatorcontrib>Huang, Chi-Ying F.</creatorcontrib><creatorcontrib>Chang, Jang-Yang</creatorcontrib><creatorcontrib>Pan, Wen-Yu</creatorcontrib><creatorcontrib>Chen, Huang-Hui</creatorcontrib><creatorcontrib>Cheng, Yun-Hsia</creatorcontrib><creatorcontrib>Lee, Kuan-Der</creatorcontrib><creatorcontrib>Chen, Miao-Fen</creatorcontrib><creatorcontrib>Kuo, Ching-Chuan</creatorcontrib><creatorcontrib>Chen, Li-Tzong</creatorcontrib><title>Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers.</description><subject>20-Hydroxysteroid Dehydrogenases - genetics</subject><subject>20-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>Acquired resistance</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidant Response Elements - drug effects</subject><subject>Antioxidant Response Elements - genetics</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>IL-6 signaling</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukin-6 - pharmacology</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Nrf2/AKR1C axis</subject><subject>Organoplatinum Compounds - pharmacology</subject><subject>Oxaliplatin</subject><subject>RNA, Small Interfering</subject><subject>Signal Transduction - drug effects</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Tumor Cells, Cultured</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0EokPhAdggL9kktePEcWBVjWBaMQKJDmvLsY-nHiX21E7Q9MF4PxxNYQkrX_RfdM6H0FtKSkoovzqUvT6WFaGsJG1JquYZWlHRsqLquHiOVoQQnu9NdYFepXRYnoLTl-iiYh1jTPAV-rUBDxhOxwgpueDxMQbrBuf32IaIlVfDY3IJK_0wuwgGh5Ma3HFQk_M4e1yalJ-wVXoKMeH8eT-PyuO9SlN0GmsVtfNhVHh3t7kp7hjWMAzpA97dA45hABwsvt0WHCe3z2VLsfIGf422urr-8p2usTrlfmfAT846nYuDf41eWDUkePN0XqIfnz_t1jfF9tvmdn29LXTdVFNR11pZbkXTGdU2pKt7w1XLiWl5I7hubNVZ25oWqG1BiabtK91nA9NWgAbGLtH7c27eysMMaZKjS8sAykOYk6ScdV1HiRD_l9asEbUggmQpPUt1DClFsPIY3ajio6RELmDlQWawcgErSSsz2Ox59xQ_9yOYv44_JLPg41kAeR8_HUSZtAOvwWRsepImuH_E_wbDOrY2</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Chen, Chih-Cheng</creator><creator>Chu, Chia-Bao</creator><creator>Liu, Ko-Jiunn</creator><creator>Huang, Chi-Ying F.</creator><creator>Chang, Jang-Yang</creator><creator>Pan, Wen-Yu</creator><creator>Chen, Huang-Hui</creator><creator>Cheng, Yun-Hsia</creator><creator>Lee, Kuan-Der</creator><creator>Chen, Miao-Fen</creator><creator>Kuo, Ching-Chuan</creator><creator>Chen, Li-Tzong</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20131001</creationdate><title>Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification</title><author>Chen, Chih-Cheng ; Chu, Chia-Bao ; Liu, Ko-Jiunn ; Huang, Chi-Ying F. ; Chang, Jang-Yang ; Pan, Wen-Yu ; Chen, Huang-Hui ; Cheng, Yun-Hsia ; Lee, Kuan-Der ; Chen, Miao-Fen ; Kuo, Ching-Chuan ; Chen, Li-Tzong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>20-Hydroxysteroid Dehydrogenases - genetics</topic><topic>20-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>Acquired resistance</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidant Response Elements - drug effects</topic><topic>Antioxidant Response Elements - genetics</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>IL-6 signaling</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukin-6 - pharmacology</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Nrf2/AKR1C axis</topic><topic>Organoplatinum Compounds - pharmacology</topic><topic>Oxaliplatin</topic><topic>RNA, Small Interfering</topic><topic>Signal Transduction - drug effects</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chih-Cheng</creatorcontrib><creatorcontrib>Chu, Chia-Bao</creatorcontrib><creatorcontrib>Liu, Ko-Jiunn</creatorcontrib><creatorcontrib>Huang, Chi-Ying F.</creatorcontrib><creatorcontrib>Chang, Jang-Yang</creatorcontrib><creatorcontrib>Pan, Wen-Yu</creatorcontrib><creatorcontrib>Chen, Huang-Hui</creatorcontrib><creatorcontrib>Cheng, Yun-Hsia</creatorcontrib><creatorcontrib>Lee, Kuan-Der</creatorcontrib><creatorcontrib>Chen, Miao-Fen</creatorcontrib><creatorcontrib>Kuo, Ching-Chuan</creatorcontrib><creatorcontrib>Chen, Li-Tzong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chih-Cheng</au><au>Chu, Chia-Bao</au><au>Liu, Ko-Jiunn</au><au>Huang, Chi-Ying F.</au><au>Chang, Jang-Yang</au><au>Pan, Wen-Yu</au><au>Chen, Huang-Hui</au><au>Cheng, Yun-Hsia</au><au>Lee, Kuan-Der</au><au>Chen, Miao-Fen</au><au>Kuo, Ching-Chuan</au><au>Chen, Li-Tzong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>86</volume><issue>7</issue><spage>872</spage><epage>887</epage><pages>872-887</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23933386</pmid><doi>10.1016/j.bcp.2013.07.025</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2013-10, Vol.86 (7), p.872-887 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_proquest_miscellaneous_1639991088 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | 20-Hydroxysteroid Dehydrogenases - genetics 20-Hydroxysteroid Dehydrogenases - metabolism Acquired resistance Antineoplastic Agents - pharmacology Antioxidant Response Elements - drug effects Antioxidant Response Elements - genetics Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics Gene Expression Profiling Gene Expression Regulation, Neoplastic - drug effects Gene Knockdown Techniques Humans IL-6 signaling Interleukin-6 - metabolism Interleukin-6 - pharmacology NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Nrf2/AKR1C axis Organoplatinum Compounds - pharmacology Oxaliplatin RNA, Small Interfering Signal Transduction - drug effects Stomach Neoplasms - drug therapy Stomach Neoplasms - genetics Stomach Neoplasms - metabolism Tumor Cells, Cultured |
title | Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: The role of IL-6 signaling and Nrf2/AKR1C axis identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20for%20analysis%20acquired%20oxaliplatin%20resistant%20factors%20in%20human%20gastric%20carcinoma%20TSGH-S3%20cells:%20The%20role%20of%20IL-6%20signaling%20and%20Nrf2/AKR1C%20axis%20identification&rft.jtitle=Biochemical%20pharmacology&rft.au=Chen,%20Chih-Cheng&rft.date=2013-10-01&rft.volume=86&rft.issue=7&rft.spage=872&rft.epage=887&rft.pages=872-887&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2013.07.025&rft_dat=%3Cproquest_cross%3E1435848080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-44caf6f859da75094bd6a760d76586c5f29ff7d7e1f7ea857b2cbf6f3cf8ece33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435848080&rft_id=info:pmid/23933386&rfr_iscdi=true |