Loading…

Biological Channel Modeling and Implantable UWB Antenna Design for Neural Recording Systems

Ultrawideband (UWB) short-range communication systems have proved to be valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size, and high data rates. Neural activity monitoring in the brain requires high data rate (800 kb/s per neu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2015-01, Vol.62 (1), p.88-98
Main Authors: Bahrami, Hadi, Mirbozorgi, S. Abdollah, Rusch, Leslie A., Gosselin, Benoit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrawideband (UWB) short-range communication systems have proved to be valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size, and high data rates. Neural activity monitoring in the brain requires high data rate (800 kb/s per neural sensor), and we target a system supporting a large number of sensors, in particular, aggregate transmission above 430 Mb/s (~512 sensors). Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage, and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver under these requirements. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulation and experiment. Our miniaturized antennas, 12 mm x 12 mm, need worst-case receiver sensitivities of -38 and -30.5 dBm for the first and second scenarios, respectively. These sensitivities allow us to successfully detect signals transmitted through tissues in the 3.1-10.6-GHz UWB band.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2014.2339836