Loading…

Speciation with gene flow in equids despite extensive chromosomal plasticity

Significance Thirty years after the first DNA fragment from the extinct quagga zebra was sequenced, we set another milestone in equine genomics by sequencing its entire genome, along with the genomes of the surviving equine species. This extensive dataset allows us to decipher the genetic makeup und...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (52), p.18655-18660
Main Authors: Jónsson, Hákon, Schubert, Mikkel, Seguin-Orlando, Andaine, Ginolhac, Aurélien, Petersen, Lillian, Fumagalli, Matteo, Albrechtsen, Anders, Petersen, Bent, Korneliussen, Thorfinn S., Vilstrup, Julia T., Lear, Teri, Myka, Jennifer Leigh, Lundquist, Judith, Miller, Donald C., Alfarhan, Ahmed H., Alquraishi, Saleh A., Al-Rasheid, Khaled A. S., Stagegaard, Julia, Strauss, Günter, Bertelsen, Mads Frost, Sicheritz-Ponten, Thomas, Antczak, Douglas F., Bailey, Ernest, Nielsen, Rasmus, Willerslev, Eske, Orlando, Ludovic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3
cites cdi_FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3
container_end_page 18660
container_issue 52
container_start_page 18655
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Jónsson, Hákon
Schubert, Mikkel
Seguin-Orlando, Andaine
Ginolhac, Aurélien
Petersen, Lillian
Fumagalli, Matteo
Albrechtsen, Anders
Petersen, Bent
Korneliussen, Thorfinn S.
Vilstrup, Julia T.
Lear, Teri
Myka, Jennifer Leigh
Lundquist, Judith
Miller, Donald C.
Alfarhan, Ahmed H.
Alquraishi, Saleh A.
Al-Rasheid, Khaled A. S.
Stagegaard, Julia
Strauss, Günter
Bertelsen, Mads Frost
Sicheritz-Ponten, Thomas
Antczak, Douglas F.
Bailey, Ernest
Nielsen, Rasmus
Willerslev, Eske
Orlando, Ludovic
description Significance Thirty years after the first DNA fragment from the extinct quagga zebra was sequenced, we set another milestone in equine genomics by sequencing its entire genome, along with the genomes of the surviving equine species. This extensive dataset allows us to decipher the genetic makeup underlying lineage-specific adaptations and reveal the complex history of equine speciation. We find that Equus first diverged in the New World, spread across the Old World 2.1–3.4 Mya, and finally experienced major demographic expansions and collapses coinciding with past climate changes. Strikingly, we find multiple instances of hybridization throughout the equine tree, despite extremely divergent chromosomal structures. This contrasts with theories promoting chromosomal incompatibilities as drivers for the origin of equine species. Horses, asses, and zebras belong to a single genus, Equus , which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.
doi_str_mv 10.1073/pnas.1412627111
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1641426369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43278900</jstor_id><sourcerecordid>43278900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3</originalsourceid><addsrcrecordid>eNqNkbtv1EAQxi0EIkegpgIs0dBcMrMv7zZIKOIlnUQRUq_W9vhuT7bX8a4T8t9j647jUVFN8f3mm8eXZS8RLhAKfjn0Ll6gQKZYgYiPshWCwbUSBh5nKwBWrLVg4ix7FuMeAIzU8DQ7Y1JIDtqsss31QJV3yYc-v_dpl2-pp7xpw33u-5xuJ1_HvKY4-EQ5_UjUR39HebUbQxdi6FybD62LyVc-PTzPnjSujfTiWM-zm08fv199WW--ff569WGzriSTaS2JVMlkzVjFmaqJYQ1EUgojmqUaXdRcc6NNSWUtsawRNVZ1aQhECcTPs_cH32EqO6or6tPoWjuMvnPjgw3O27-V3u_sNtxZwbRQIGeDd0eDMdxOFJPtfKyobV1PYYoWlYJ5vi7wP1CBgimuzIy-_Qfdh2ns508slCwKCULP1OWBqsYQ40jNaW8Eu4Rql1Dt71Dnjtd_nnvif6U4A_kRWDpPdohWMotayeXiVwdkH1MYT4zgrNAGYNbfHPTGBeu2o4_25poBKgDkugDNfwKom7ub</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645775048</pqid></control><display><type>article</type><title>Speciation with gene flow in equids despite extensive chromosomal plasticity</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Jónsson, Hákon ; Schubert, Mikkel ; Seguin-Orlando, Andaine ; Ginolhac, Aurélien ; Petersen, Lillian ; Fumagalli, Matteo ; Albrechtsen, Anders ; Petersen, Bent ; Korneliussen, Thorfinn S. ; Vilstrup, Julia T. ; Lear, Teri ; Myka, Jennifer Leigh ; Lundquist, Judith ; Miller, Donald C. ; Alfarhan, Ahmed H. ; Alquraishi, Saleh A. ; Al-Rasheid, Khaled A. S. ; Stagegaard, Julia ; Strauss, Günter ; Bertelsen, Mads Frost ; Sicheritz-Ponten, Thomas ; Antczak, Douglas F. ; Bailey, Ernest ; Nielsen, Rasmus ; Willerslev, Eske ; Orlando, Ludovic</creator><creatorcontrib>Jónsson, Hákon ; Schubert, Mikkel ; Seguin-Orlando, Andaine ; Ginolhac, Aurélien ; Petersen, Lillian ; Fumagalli, Matteo ; Albrechtsen, Anders ; Petersen, Bent ; Korneliussen, Thorfinn S. ; Vilstrup, Julia T. ; Lear, Teri ; Myka, Jennifer Leigh ; Lundquist, Judith ; Miller, Donald C. ; Alfarhan, Ahmed H. ; Alquraishi, Saleh A. ; Al-Rasheid, Khaled A. S. ; Stagegaard, Julia ; Strauss, Günter ; Bertelsen, Mads Frost ; Sicheritz-Ponten, Thomas ; Antczak, Douglas F. ; Bailey, Ernest ; Nielsen, Rasmus ; Willerslev, Eske ; Orlando, Ludovic</creatorcontrib><description>Significance Thirty years after the first DNA fragment from the extinct quagga zebra was sequenced, we set another milestone in equine genomics by sequencing its entire genome, along with the genomes of the surviving equine species. This extensive dataset allows us to decipher the genetic makeup underlying lineage-specific adaptations and reveal the complex history of equine speciation. We find that Equus first diverged in the New World, spread across the Old World 2.1–3.4 Mya, and finally experienced major demographic expansions and collapses coinciding with past climate changes. Strikingly, we find multiple instances of hybridization throughout the equine tree, despite extremely divergent chromosomal structures. This contrasts with theories promoting chromosomal incompatibilities as drivers for the origin of equine species. Horses, asses, and zebras belong to a single genus, Equus , which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1412627111</identifier><identifier>PMID: 25453089</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Admixtures ; Africa ; Animal behavior ; Animals ; Biological Sciences ; Chromosomes ; Chromosomes, Mammalian - genetics ; Demographics ; Equidae - genetics ; Equus ; Evolution ; Evolution, Molecular ; Extinct species ; Extinction ; Extinction, Biological ; Gene Flow ; Genomes ; Horses ; North America ; Speciation ; Species extinction ; Zebras</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18655-18660</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3</citedby><cites>FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3</cites><orcidid>0000-0003-2401-9921 ; 0000-0001-6615-1141 ; 0000-0001-7576-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43278900$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43278900$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25453089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jónsson, Hákon</creatorcontrib><creatorcontrib>Schubert, Mikkel</creatorcontrib><creatorcontrib>Seguin-Orlando, Andaine</creatorcontrib><creatorcontrib>Ginolhac, Aurélien</creatorcontrib><creatorcontrib>Petersen, Lillian</creatorcontrib><creatorcontrib>Fumagalli, Matteo</creatorcontrib><creatorcontrib>Albrechtsen, Anders</creatorcontrib><creatorcontrib>Petersen, Bent</creatorcontrib><creatorcontrib>Korneliussen, Thorfinn S.</creatorcontrib><creatorcontrib>Vilstrup, Julia T.</creatorcontrib><creatorcontrib>Lear, Teri</creatorcontrib><creatorcontrib>Myka, Jennifer Leigh</creatorcontrib><creatorcontrib>Lundquist, Judith</creatorcontrib><creatorcontrib>Miller, Donald C.</creatorcontrib><creatorcontrib>Alfarhan, Ahmed H.</creatorcontrib><creatorcontrib>Alquraishi, Saleh A.</creatorcontrib><creatorcontrib>Al-Rasheid, Khaled A. S.</creatorcontrib><creatorcontrib>Stagegaard, Julia</creatorcontrib><creatorcontrib>Strauss, Günter</creatorcontrib><creatorcontrib>Bertelsen, Mads Frost</creatorcontrib><creatorcontrib>Sicheritz-Ponten, Thomas</creatorcontrib><creatorcontrib>Antczak, Douglas F.</creatorcontrib><creatorcontrib>Bailey, Ernest</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Willerslev, Eske</creatorcontrib><creatorcontrib>Orlando, Ludovic</creatorcontrib><title>Speciation with gene flow in equids despite extensive chromosomal plasticity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Thirty years after the first DNA fragment from the extinct quagga zebra was sequenced, we set another milestone in equine genomics by sequencing its entire genome, along with the genomes of the surviving equine species. This extensive dataset allows us to decipher the genetic makeup underlying lineage-specific adaptations and reveal the complex history of equine speciation. We find that Equus first diverged in the New World, spread across the Old World 2.1–3.4 Mya, and finally experienced major demographic expansions and collapses coinciding with past climate changes. Strikingly, we find multiple instances of hybridization throughout the equine tree, despite extremely divergent chromosomal structures. This contrasts with theories promoting chromosomal incompatibilities as drivers for the origin of equine species. Horses, asses, and zebras belong to a single genus, Equus , which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.</description><subject>Admixtures</subject><subject>Africa</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Demographics</subject><subject>Equidae - genetics</subject><subject>Equus</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Extinct species</subject><subject>Extinction</subject><subject>Extinction, Biological</subject><subject>Gene Flow</subject><subject>Genomes</subject><subject>Horses</subject><subject>North America</subject><subject>Speciation</subject><subject>Species extinction</subject><subject>Zebras</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkbtv1EAQxi0EIkegpgIs0dBcMrMv7zZIKOIlnUQRUq_W9vhuT7bX8a4T8t9j647jUVFN8f3mm8eXZS8RLhAKfjn0Ll6gQKZYgYiPshWCwbUSBh5nKwBWrLVg4ix7FuMeAIzU8DQ7Y1JIDtqsss31QJV3yYc-v_dpl2-pp7xpw33u-5xuJ1_HvKY4-EQ5_UjUR39HebUbQxdi6FybD62LyVc-PTzPnjSujfTiWM-zm08fv199WW--ff569WGzriSTaS2JVMlkzVjFmaqJYQ1EUgojmqUaXdRcc6NNSWUtsawRNVZ1aQhECcTPs_cH32EqO6or6tPoWjuMvnPjgw3O27-V3u_sNtxZwbRQIGeDd0eDMdxOFJPtfKyobV1PYYoWlYJ5vi7wP1CBgimuzIy-_Qfdh2ns508slCwKCULP1OWBqsYQ40jNaW8Eu4Rql1Dt71Dnjtd_nnvif6U4A_kRWDpPdohWMotayeXiVwdkH1MYT4zgrNAGYNbfHPTGBeu2o4_25poBKgDkugDNfwKom7ub</recordid><startdate>20141230</startdate><enddate>20141230</enddate><creator>Jónsson, Hákon</creator><creator>Schubert, Mikkel</creator><creator>Seguin-Orlando, Andaine</creator><creator>Ginolhac, Aurélien</creator><creator>Petersen, Lillian</creator><creator>Fumagalli, Matteo</creator><creator>Albrechtsen, Anders</creator><creator>Petersen, Bent</creator><creator>Korneliussen, Thorfinn S.</creator><creator>Vilstrup, Julia T.</creator><creator>Lear, Teri</creator><creator>Myka, Jennifer Leigh</creator><creator>Lundquist, Judith</creator><creator>Miller, Donald C.</creator><creator>Alfarhan, Ahmed H.</creator><creator>Alquraishi, Saleh A.</creator><creator>Al-Rasheid, Khaled A. S.</creator><creator>Stagegaard, Julia</creator><creator>Strauss, Günter</creator><creator>Bertelsen, Mads Frost</creator><creator>Sicheritz-Ponten, Thomas</creator><creator>Antczak, Douglas F.</creator><creator>Bailey, Ernest</creator><creator>Nielsen, Rasmus</creator><creator>Willerslev, Eske</creator><creator>Orlando, Ludovic</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2401-9921</orcidid><orcidid>https://orcid.org/0000-0001-6615-1141</orcidid><orcidid>https://orcid.org/0000-0001-7576-5380</orcidid></search><sort><creationdate>20141230</creationdate><title>Speciation with gene flow in equids despite extensive chromosomal plasticity</title><author>Jónsson, Hákon ; Schubert, Mikkel ; Seguin-Orlando, Andaine ; Ginolhac, Aurélien ; Petersen, Lillian ; Fumagalli, Matteo ; Albrechtsen, Anders ; Petersen, Bent ; Korneliussen, Thorfinn S. ; Vilstrup, Julia T. ; Lear, Teri ; Myka, Jennifer Leigh ; Lundquist, Judith ; Miller, Donald C. ; Alfarhan, Ahmed H. ; Alquraishi, Saleh A. ; Al-Rasheid, Khaled A. S. ; Stagegaard, Julia ; Strauss, Günter ; Bertelsen, Mads Frost ; Sicheritz-Ponten, Thomas ; Antczak, Douglas F. ; Bailey, Ernest ; Nielsen, Rasmus ; Willerslev, Eske ; Orlando, Ludovic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Admixtures</topic><topic>Africa</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Demographics</topic><topic>Equidae - genetics</topic><topic>Equus</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Extinct species</topic><topic>Extinction</topic><topic>Extinction, Biological</topic><topic>Gene Flow</topic><topic>Genomes</topic><topic>Horses</topic><topic>North America</topic><topic>Speciation</topic><topic>Species extinction</topic><topic>Zebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jónsson, Hákon</creatorcontrib><creatorcontrib>Schubert, Mikkel</creatorcontrib><creatorcontrib>Seguin-Orlando, Andaine</creatorcontrib><creatorcontrib>Ginolhac, Aurélien</creatorcontrib><creatorcontrib>Petersen, Lillian</creatorcontrib><creatorcontrib>Fumagalli, Matteo</creatorcontrib><creatorcontrib>Albrechtsen, Anders</creatorcontrib><creatorcontrib>Petersen, Bent</creatorcontrib><creatorcontrib>Korneliussen, Thorfinn S.</creatorcontrib><creatorcontrib>Vilstrup, Julia T.</creatorcontrib><creatorcontrib>Lear, Teri</creatorcontrib><creatorcontrib>Myka, Jennifer Leigh</creatorcontrib><creatorcontrib>Lundquist, Judith</creatorcontrib><creatorcontrib>Miller, Donald C.</creatorcontrib><creatorcontrib>Alfarhan, Ahmed H.</creatorcontrib><creatorcontrib>Alquraishi, Saleh A.</creatorcontrib><creatorcontrib>Al-Rasheid, Khaled A. S.</creatorcontrib><creatorcontrib>Stagegaard, Julia</creatorcontrib><creatorcontrib>Strauss, Günter</creatorcontrib><creatorcontrib>Bertelsen, Mads Frost</creatorcontrib><creatorcontrib>Sicheritz-Ponten, Thomas</creatorcontrib><creatorcontrib>Antczak, Douglas F.</creatorcontrib><creatorcontrib>Bailey, Ernest</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Willerslev, Eske</creatorcontrib><creatorcontrib>Orlando, Ludovic</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jónsson, Hákon</au><au>Schubert, Mikkel</au><au>Seguin-Orlando, Andaine</au><au>Ginolhac, Aurélien</au><au>Petersen, Lillian</au><au>Fumagalli, Matteo</au><au>Albrechtsen, Anders</au><au>Petersen, Bent</au><au>Korneliussen, Thorfinn S.</au><au>Vilstrup, Julia T.</au><au>Lear, Teri</au><au>Myka, Jennifer Leigh</au><au>Lundquist, Judith</au><au>Miller, Donald C.</au><au>Alfarhan, Ahmed H.</au><au>Alquraishi, Saleh A.</au><au>Al-Rasheid, Khaled A. S.</au><au>Stagegaard, Julia</au><au>Strauss, Günter</au><au>Bertelsen, Mads Frost</au><au>Sicheritz-Ponten, Thomas</au><au>Antczak, Douglas F.</au><au>Bailey, Ernest</au><au>Nielsen, Rasmus</au><au>Willerslev, Eske</au><au>Orlando, Ludovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speciation with gene flow in equids despite extensive chromosomal plasticity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-30</date><risdate>2014</risdate><volume>111</volume><issue>52</issue><spage>18655</spage><epage>18660</epage><pages>18655-18660</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Thirty years after the first DNA fragment from the extinct quagga zebra was sequenced, we set another milestone in equine genomics by sequencing its entire genome, along with the genomes of the surviving equine species. This extensive dataset allows us to decipher the genetic makeup underlying lineage-specific adaptations and reveal the complex history of equine speciation. We find that Equus first diverged in the New World, spread across the Old World 2.1–3.4 Mya, and finally experienced major demographic expansions and collapses coinciding with past climate changes. Strikingly, we find multiple instances of hybridization throughout the equine tree, despite extremely divergent chromosomal structures. This contrasts with theories promoting chromosomal incompatibilities as drivers for the origin of equine species. Horses, asses, and zebras belong to a single genus, Equus , which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25453089</pmid><doi>10.1073/pnas.1412627111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2401-9921</orcidid><orcidid>https://orcid.org/0000-0001-6615-1141</orcidid><orcidid>https://orcid.org/0000-0001-7576-5380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18655-18660
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1641426369
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Admixtures
Africa
Animal behavior
Animals
Biological Sciences
Chromosomes
Chromosomes, Mammalian - genetics
Demographics
Equidae - genetics
Equus
Evolution
Evolution, Molecular
Extinct species
Extinction
Extinction, Biological
Gene Flow
Genomes
Horses
North America
Speciation
Species extinction
Zebras
title Speciation with gene flow in equids despite extensive chromosomal plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speciation%20with%20gene%20flow%20in%20equids%20despite%20extensive%20chromosomal%20plasticity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=J%C3%B3nsson,%20H%C3%A1kon&rft.date=2014-12-30&rft.volume=111&rft.issue=52&rft.spage=18655&rft.epage=18660&rft.pages=18655-18660&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1412627111&rft_dat=%3Cjstor_proqu%3E43278900%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-5ee6b25d22c326de21d0ee55494fee55987d383989bebd51bd1181cdb9e04b0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645775048&rft_id=info:pmid/25453089&rft_jstor_id=43278900&rfr_iscdi=true