Loading…
A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai
•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the...
Saved in:
Published in: | Landscape and urban planning 2014-07, Vol.127, p.13-17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03 |
container_end_page | 17 |
container_issue | |
container_start_page | 13 |
container_title | Landscape and urban planning |
container_volume | 127 |
creator | Yue, Wenze Ye, XinYue Xu, Jianhua Xu, Lihua Lee, Jay |
description | •We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model.
To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution. |
doi_str_mv | 10.1016/j.landurbplan.2014.04.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642208986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169204614000942</els_id><sourcerecordid>1627956676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</originalsourceid><addsrcrecordid>eNqNkcGO0zAURS0EEmXgH8wCiU2K7SSOvawqmBlpJBbA2nLs59YltYOdVOqOHR_AH86XjKNWiOVIT3p3cXSv_S5C7ylZU0L5p8N60MHOqR_LXjNCmzUpQ8kLtKKiYxUnnL1Eq8LKipGGv0Zvcj4QQmjL6Qr92eA--d1-CpDz4--_VqefV7lLAGHR-BgtDNjFVFTwU0w-7HDJ1AEv6dnoETCc4jBPPgbsA9bYwgmGOC6kiXOY0hkXT7zBRmfAeZrtGUeHv-112O21f4teOT1keHfdN-jHl8_ft3fVw9fb--3moTIN7aaq1aJ3dS0F6UhtKWOmZT2RjWic7qWoQWvBZdtZ61jXNhJkI4nUwIUwvHWkvkEfL75jir9myJM6-mxgKP-AOGdFecMYEVLwZ6Csky3n3YLKC2pSzDmBU2PyR53OihK19KQO6r-e1NKTImXo8qIP1xhdDjm4pIPx-Z8BEy3thKgLt71wUM5z8pBUNh6CAesTmEnZ6J-R9gRjpLNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627956676</pqid></control><display><type>article</type><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</creator><creatorcontrib>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</creatorcontrib><description>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model.
To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</description><identifier>ISSN: 0169-2046</identifier><identifier>EISSN: 1872-6062</identifier><identifier>DOI: 10.1016/j.landurbplan.2014.04.010</identifier><identifier>CODEN: LUPLEZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Brightness–darkness–greenness (B–D–G) model ; Conservation, protection and management of environment and wildlife ; Dynamic tests ; Dynamics ; Evolution ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Monitoring ; Remote sensing ; Shanghai ; Spectra ; Teledetection and vegetation maps ; Urban environments ; Urban remote sensing ; Vegetation–impervious surface–soil (V–I–S) model</subject><ispartof>Landscape and urban planning, 2014-07, Vol.127, p.13-17</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</citedby><cites>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28517883$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Wenze</creatorcontrib><creatorcontrib>Ye, XinYue</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Xu, Lihua</creatorcontrib><creatorcontrib>Lee, Jay</creatorcontrib><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><title>Landscape and urban planning</title><description>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model.
To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Brightness–darkness–greenness (B–D–G) model</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Monitoring</subject><subject>Remote sensing</subject><subject>Shanghai</subject><subject>Spectra</subject><subject>Teledetection and vegetation maps</subject><subject>Urban environments</subject><subject>Urban remote sensing</subject><subject>Vegetation–impervious surface–soil (V–I–S) model</subject><issn>0169-2046</issn><issn>1872-6062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcGO0zAURS0EEmXgH8wCiU2K7SSOvawqmBlpJBbA2nLs59YltYOdVOqOHR_AH86XjKNWiOVIT3p3cXSv_S5C7ylZU0L5p8N60MHOqR_LXjNCmzUpQ8kLtKKiYxUnnL1Eq8LKipGGv0Zvcj4QQmjL6Qr92eA--d1-CpDz4--_VqefV7lLAGHR-BgtDNjFVFTwU0w-7HDJ1AEv6dnoETCc4jBPPgbsA9bYwgmGOC6kiXOY0hkXT7zBRmfAeZrtGUeHv-112O21f4teOT1keHfdN-jHl8_ft3fVw9fb--3moTIN7aaq1aJ3dS0F6UhtKWOmZT2RjWic7qWoQWvBZdtZ61jXNhJkI4nUwIUwvHWkvkEfL75jir9myJM6-mxgKP-AOGdFecMYEVLwZ6Csky3n3YLKC2pSzDmBU2PyR53OihK19KQO6r-e1NKTImXo8qIP1xhdDjm4pIPx-Z8BEy3thKgLt71wUM5z8pBUNh6CAesTmEnZ6J-R9gRjpLNy</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Yue, Wenze</creator><creator>Ye, XinYue</creator><creator>Xu, Jianhua</creator><creator>Xu, Lihua</creator><creator>Lee, Jay</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140701</creationdate><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><author>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Brightness–darkness–greenness (B–D–G) model</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Monitoring</topic><topic>Remote sensing</topic><topic>Shanghai</topic><topic>Spectra</topic><topic>Teledetection and vegetation maps</topic><topic>Urban environments</topic><topic>Urban remote sensing</topic><topic>Vegetation–impervious surface–soil (V–I–S) model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Wenze</creatorcontrib><creatorcontrib>Ye, XinYue</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Xu, Lihua</creatorcontrib><creatorcontrib>Lee, Jay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Landscape and urban planning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Wenze</au><au>Ye, XinYue</au><au>Xu, Jianhua</au><au>Xu, Lihua</au><au>Lee, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</atitle><jtitle>Landscape and urban planning</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>127</volume><spage>13</spage><epage>17</epage><pages>13-17</pages><issn>0169-2046</issn><eissn>1872-6062</eissn><coden>LUPLEZ</coden><abstract>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model.
To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.landurbplan.2014.04.010</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2046 |
ispartof | Landscape and urban planning, 2014-07, Vol.127, p.13-17 |
issn | 0169-2046 1872-6062 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642208986 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Animal, plant and microbial ecology Applied ecology Biological and medical sciences Brightness–darkness–greenness (B–D–G) model Conservation, protection and management of environment and wildlife Dynamic tests Dynamics Evolution Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques Monitoring Remote sensing Shanghai Spectra Teledetection and vegetation maps Urban environments Urban remote sensing Vegetation–impervious surface–soil (V–I–S) model |
title | A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20brightness%E2%80%93darkness%E2%80%93greenness%20model%20for%20monitoring%20urban%20landscape%20evolution%20in%20a%20developing%20country%20%E2%80%93%20A%20case%20study%20of%20Shanghai&rft.jtitle=Landscape%20and%20urban%20planning&rft.au=Yue,%20Wenze&rft.date=2014-07-01&rft.volume=127&rft.spage=13&rft.epage=17&rft.pages=13-17&rft.issn=0169-2046&rft.eissn=1872-6062&rft.coden=LUPLEZ&rft_id=info:doi/10.1016/j.landurbplan.2014.04.010&rft_dat=%3Cproquest_cross%3E1627956676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627956676&rft_id=info:pmid/&rfr_iscdi=true |