Loading…

A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai

•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the...

Full description

Saved in:
Bibliographic Details
Published in:Landscape and urban planning 2014-07, Vol.127, p.13-17
Main Authors: Yue, Wenze, Ye, XinYue, Xu, Jianhua, Xu, Lihua, Lee, Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03
cites cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03
container_end_page 17
container_issue
container_start_page 13
container_title Landscape and urban planning
container_volume 127
creator Yue, Wenze
Ye, XinYue
Xu, Jianhua
Xu, Lihua
Lee, Jay
description •We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.
doi_str_mv 10.1016/j.landurbplan.2014.04.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642208986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169204614000942</els_id><sourcerecordid>1627956676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</originalsourceid><addsrcrecordid>eNqNkcGO0zAURS0EEmXgH8wCiU2K7SSOvawqmBlpJBbA2nLs59YltYOdVOqOHR_AH86XjKNWiOVIT3p3cXSv_S5C7ylZU0L5p8N60MHOqR_LXjNCmzUpQ8kLtKKiYxUnnL1Eq8LKipGGv0Zvcj4QQmjL6Qr92eA--d1-CpDz4--_VqefV7lLAGHR-BgtDNjFVFTwU0w-7HDJ1AEv6dnoETCc4jBPPgbsA9bYwgmGOC6kiXOY0hkXT7zBRmfAeZrtGUeHv-112O21f4teOT1keHfdN-jHl8_ft3fVw9fb--3moTIN7aaq1aJ3dS0F6UhtKWOmZT2RjWic7qWoQWvBZdtZ61jXNhJkI4nUwIUwvHWkvkEfL75jir9myJM6-mxgKP-AOGdFecMYEVLwZ6Csky3n3YLKC2pSzDmBU2PyR53OihK19KQO6r-e1NKTImXo8qIP1xhdDjm4pIPx-Z8BEy3thKgLt71wUM5z8pBUNh6CAesTmEnZ6J-R9gRjpLNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627956676</pqid></control><display><type>article</type><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</creator><creatorcontrib>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</creatorcontrib><description>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</description><identifier>ISSN: 0169-2046</identifier><identifier>EISSN: 1872-6062</identifier><identifier>DOI: 10.1016/j.landurbplan.2014.04.010</identifier><identifier>CODEN: LUPLEZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Brightness–darkness–greenness (B–D–G) model ; Conservation, protection and management of environment and wildlife ; Dynamic tests ; Dynamics ; Evolution ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Monitoring ; Remote sensing ; Shanghai ; Spectra ; Teledetection and vegetation maps ; Urban environments ; Urban remote sensing ; Vegetation–impervious surface–soil (V–I–S) model</subject><ispartof>Landscape and urban planning, 2014-07, Vol.127, p.13-17</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</citedby><cites>FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28517883$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Wenze</creatorcontrib><creatorcontrib>Ye, XinYue</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Xu, Lihua</creatorcontrib><creatorcontrib>Lee, Jay</creatorcontrib><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><title>Landscape and urban planning</title><description>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Brightness–darkness–greenness (B–D–G) model</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Monitoring</subject><subject>Remote sensing</subject><subject>Shanghai</subject><subject>Spectra</subject><subject>Teledetection and vegetation maps</subject><subject>Urban environments</subject><subject>Urban remote sensing</subject><subject>Vegetation–impervious surface–soil (V–I–S) model</subject><issn>0169-2046</issn><issn>1872-6062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcGO0zAURS0EEmXgH8wCiU2K7SSOvawqmBlpJBbA2nLs59YltYOdVOqOHR_AH86XjKNWiOVIT3p3cXSv_S5C7ylZU0L5p8N60MHOqR_LXjNCmzUpQ8kLtKKiYxUnnL1Eq8LKipGGv0Zvcj4QQmjL6Qr92eA--d1-CpDz4--_VqefV7lLAGHR-BgtDNjFVFTwU0w-7HDJ1AEv6dnoETCc4jBPPgbsA9bYwgmGOC6kiXOY0hkXT7zBRmfAeZrtGUeHv-112O21f4teOT1keHfdN-jHl8_ft3fVw9fb--3moTIN7aaq1aJ3dS0F6UhtKWOmZT2RjWic7qWoQWvBZdtZ61jXNhJkI4nUwIUwvHWkvkEfL75jir9myJM6-mxgKP-AOGdFecMYEVLwZ6Csky3n3YLKC2pSzDmBU2PyR53OihK19KQO6r-e1NKTImXo8qIP1xhdDjm4pIPx-Z8BEy3thKgLt71wUM5z8pBUNh6CAesTmEnZ6J-R9gRjpLNy</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Yue, Wenze</creator><creator>Ye, XinYue</creator><creator>Xu, Jianhua</creator><creator>Xu, Lihua</creator><creator>Lee, Jay</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140701</creationdate><title>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</title><author>Yue, Wenze ; Ye, XinYue ; Xu, Jianhua ; Xu, Lihua ; Lee, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Brightness–darkness–greenness (B–D–G) model</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Monitoring</topic><topic>Remote sensing</topic><topic>Shanghai</topic><topic>Spectra</topic><topic>Teledetection and vegetation maps</topic><topic>Urban environments</topic><topic>Urban remote sensing</topic><topic>Vegetation–impervious surface–soil (V–I–S) model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Wenze</creatorcontrib><creatorcontrib>Ye, XinYue</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Xu, Lihua</creatorcontrib><creatorcontrib>Lee, Jay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Landscape and urban planning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Wenze</au><au>Ye, XinYue</au><au>Xu, Jianhua</au><au>Xu, Lihua</au><au>Lee, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai</atitle><jtitle>Landscape and urban planning</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>127</volume><spage>13</spage><epage>17</epage><pages>13-17</pages><issn>0169-2046</issn><eissn>1872-6062</eissn><coden>LUPLEZ</coden><abstract>•We developed a remotely sensed based brightness–darkness–greenness (B–D–G) model.•We used Shanghai as a case study to explore the application of B–D–G model.•The B–D–G model can reveal urban landscape composition dynamics.•We detected urban renewal by using the B–D–G model. To monitor and model the evolution of urban landscapes, we develop a brightness–darkness–greenness (B–D–G) model. It is based on the vegetation–impervious surface–soil (V–I–S) model, proposed by Ridd (1995) to simplify urban environments to three basic ground components. The model integrates the knowledge of urban landscape composition and spectra of remote sensing. The B–D–G model is a fast and effective method to analyze urban landscape composition and its evolution based on remotely sensed images, by employing an explicit endmember evolution implication via the endmember spectrum dynamics. We verify this new method through in situ measurements of spectrum and high resolution images. Then, B–D–G model is used to detect the pattern and types of urban renewal. Despite some limitations, B–D–G model provides a new perspective of modeling urban dynamics and monitoring urban landscape evolution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.landurbplan.2014.04.010</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2046
ispartof Landscape and urban planning, 2014-07, Vol.127, p.13-17
issn 0169-2046
1872-6062
language eng
recordid cdi_proquest_miscellaneous_1642208986
source ScienceDirect Freedom Collection 2022-2024
subjects Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Brightness–darkness–greenness (B–D–G) model
Conservation, protection and management of environment and wildlife
Dynamic tests
Dynamics
Evolution
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Monitoring
Remote sensing
Shanghai
Spectra
Teledetection and vegetation maps
Urban environments
Urban remote sensing
Vegetation–impervious surface–soil (V–I–S) model
title A brightness–darkness–greenness model for monitoring urban landscape evolution in a developing country – A case study of Shanghai
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20brightness%E2%80%93darkness%E2%80%93greenness%20model%20for%20monitoring%20urban%20landscape%20evolution%20in%20a%20developing%20country%20%E2%80%93%20A%20case%20study%20of%20Shanghai&rft.jtitle=Landscape%20and%20urban%20planning&rft.au=Yue,%20Wenze&rft.date=2014-07-01&rft.volume=127&rft.spage=13&rft.epage=17&rft.pages=13-17&rft.issn=0169-2046&rft.eissn=1872-6062&rft.coden=LUPLEZ&rft_id=info:doi/10.1016/j.landurbplan.2014.04.010&rft_dat=%3Cproquest_cross%3E1627956676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-5a8bf33980703d122c52b09484fab983eaa86957ddf27549e94909ae688c65f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627956676&rft_id=info:pmid/&rfr_iscdi=true