Loading…

Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres

Ir–Re coatings are widely applied as protective coatings on glass molding dies. Because the glass molding process in mass production is conducted in an oxygen-containing atmosphere at a high temperature, the protective coatings must endure cyclic annealing treatments. Oxidation and thermal stability...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2013-12, Vol.237, p.105-111
Main Authors: Liu, Shih-Chang, Chen, Yung-I, Tsai, Hung-Yin, Lin, Kuo-Cheng, Chen, Yung-Hsing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3
cites cdi_FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3
container_end_page 111
container_issue
container_start_page 105
container_title Surface & coatings technology
container_volume 237
creator Liu, Shih-Chang
Chen, Yung-I
Tsai, Hung-Yin
Lin, Kuo-Cheng
Chen, Yung-Hsing
description Ir–Re coatings are widely applied as protective coatings on glass molding dies. Because the glass molding process in mass production is conducted in an oxygen-containing atmosphere at a high temperature, the protective coatings must endure cyclic annealing treatments. Oxidation and thermal stability of Ir–Re coatings has received scant attention. In this study, Ir–Re coatings were prepared using co-sputtering. Constant-temperature annealing treatments were conducted at 600°C under a 1% O2–Ar atmosphere, which is an oxidation-accelerating atmosphere. The thermal cyclic test was performed at 270 and 600°C under atmospheres of 1% O2–Ar and 15ppm O2–N2, respectively. The 15ppm O2–N2 atmosphere is glass molding atmosphere suitable for mass production. The variations in crystalline structure, nanohardness, surface roughness, and residual stress after various annealing treatments were investigated. The more elevated Ir content coating, namely, Ir0.77Re0.23, displays superior thermal stability compared with the lower Ir content coating, namely, Ir0.53Re0.47. •Residual stress variation of coatings after thermal cyclic annealing was tracked.•Crack or pore formation after annealing resulted in coating failure.•Ir0.77Re0.23 coatings behaved superior thermal stability than Ir0.53Re0.47 coatings.
doi_str_mv 10.1016/j.surfcoat.2013.06.042
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642214360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897213005549</els_id><sourcerecordid>1642214360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3</originalsourceid><addsrcrecordid>eNqFkM9q3DAQh0VJoJtNXqH4UujF7uiPJfvWEpo0EAiE5CzG8nirxSttJW_p3voOecM8SbxskmtPc5jv9xvmY-wTh4oD11_XVd6lwUWcKgFcVqArUOIDW_DGtKWUypywBYjalE1rxEd2lvMaALhp1YLdPfyitMGxyBN2fvTTvohDcZOe_z3dU3Eo9WGVCwyBcKS-8KGIf_crCqWLYUIf5nWB0ybm7VxE-ZydDjhmunidS_Z49ePh8md5e3d9c_n9tnTS1FOp234go5Th4BRxglr3XU0tByNB1nWLyghed63RHQ2iB123ouk77BEbIpRL9uXYu03x947yZDc-OxpHDBR32XKthOBKaphRfURdijknGuw2-Q2mveVgDwbt2r4ZtAeDFrSdDc7Bz683MDsch4TB-fyeFo3QUgg1c9-OHM0P__GUbHaegqPeJ3KT7aP_36kXCPuMDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642214360</pqid></control><display><type>article</type><title>Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres</title><source>Elsevier</source><creator>Liu, Shih-Chang ; Chen, Yung-I ; Tsai, Hung-Yin ; Lin, Kuo-Cheng ; Chen, Yung-Hsing</creator><creatorcontrib>Liu, Shih-Chang ; Chen, Yung-I ; Tsai, Hung-Yin ; Lin, Kuo-Cheng ; Chen, Yung-Hsing</creatorcontrib><description>Ir–Re coatings are widely applied as protective coatings on glass molding dies. Because the glass molding process in mass production is conducted in an oxygen-containing atmosphere at a high temperature, the protective coatings must endure cyclic annealing treatments. Oxidation and thermal stability of Ir–Re coatings has received scant attention. In this study, Ir–Re coatings were prepared using co-sputtering. Constant-temperature annealing treatments were conducted at 600°C under a 1% O2–Ar atmosphere, which is an oxidation-accelerating atmosphere. The thermal cyclic test was performed at 270 and 600°C under atmospheres of 1% O2–Ar and 15ppm O2–N2, respectively. The 15ppm O2–N2 atmosphere is glass molding atmosphere suitable for mass production. The variations in crystalline structure, nanohardness, surface roughness, and residual stress after various annealing treatments were investigated. The more elevated Ir content coating, namely, Ir0.77Re0.23, displays superior thermal stability compared with the lower Ir content coating, namely, Ir0.53Re0.47. •Residual stress variation of coatings after thermal cyclic annealing was tracked.•Crack or pore formation after annealing resulted in coating failure.•Ir0.77Re0.23 coatings behaved superior thermal stability than Ir0.53Re0.47 coatings.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2013.06.042</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annealing ; Applied sciences ; Atmospheres ; Coatings ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Glass ; Glass molding ; Ir–Re ; Mass production ; Materials science ; Metals. Metallurgy ; Molding (process) ; Oxidation ; Physics ; Production techniques ; Protective coatings ; Surface treatment ; Surface treatments ; Thermal stability</subject><ispartof>Surface &amp; coatings technology, 2013-12, Vol.237, p.105-111</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3</citedby><cites>FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28263224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shih-Chang</creatorcontrib><creatorcontrib>Chen, Yung-I</creatorcontrib><creatorcontrib>Tsai, Hung-Yin</creatorcontrib><creatorcontrib>Lin, Kuo-Cheng</creatorcontrib><creatorcontrib>Chen, Yung-Hsing</creatorcontrib><title>Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres</title><title>Surface &amp; coatings technology</title><description>Ir–Re coatings are widely applied as protective coatings on glass molding dies. Because the glass molding process in mass production is conducted in an oxygen-containing atmosphere at a high temperature, the protective coatings must endure cyclic annealing treatments. Oxidation and thermal stability of Ir–Re coatings has received scant attention. In this study, Ir–Re coatings were prepared using co-sputtering. Constant-temperature annealing treatments were conducted at 600°C under a 1% O2–Ar atmosphere, which is an oxidation-accelerating atmosphere. The thermal cyclic test was performed at 270 and 600°C under atmospheres of 1% O2–Ar and 15ppm O2–N2, respectively. The 15ppm O2–N2 atmosphere is glass molding atmosphere suitable for mass production. The variations in crystalline structure, nanohardness, surface roughness, and residual stress after various annealing treatments were investigated. The more elevated Ir content coating, namely, Ir0.77Re0.23, displays superior thermal stability compared with the lower Ir content coating, namely, Ir0.53Re0.47. •Residual stress variation of coatings after thermal cyclic annealing was tracked.•Crack or pore formation after annealing resulted in coating failure.•Ir0.77Re0.23 coatings behaved superior thermal stability than Ir0.53Re0.47 coatings.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Atmospheres</subject><subject>Coatings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Glass molding</subject><subject>Ir–Re</subject><subject>Mass production</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Molding (process)</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Protective coatings</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Thermal stability</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM9q3DAQh0VJoJtNXqH4UujF7uiPJfvWEpo0EAiE5CzG8nirxSttJW_p3voOecM8SbxskmtPc5jv9xvmY-wTh4oD11_XVd6lwUWcKgFcVqArUOIDW_DGtKWUypywBYjalE1rxEd2lvMaALhp1YLdPfyitMGxyBN2fvTTvohDcZOe_z3dU3Eo9WGVCwyBcKS-8KGIf_crCqWLYUIf5nWB0ybm7VxE-ZydDjhmunidS_Z49ePh8md5e3d9c_n9tnTS1FOp234go5Th4BRxglr3XU0tByNB1nWLyghed63RHQ2iB123ouk77BEbIpRL9uXYu03x947yZDc-OxpHDBR32XKthOBKaphRfURdijknGuw2-Q2mveVgDwbt2r4ZtAeDFrSdDc7Bz683MDsch4TB-fyeFo3QUgg1c9-OHM0P__GUbHaegqPeJ3KT7aP_36kXCPuMDw</recordid><startdate>20131225</startdate><enddate>20131225</enddate><creator>Liu, Shih-Chang</creator><creator>Chen, Yung-I</creator><creator>Tsai, Hung-Yin</creator><creator>Lin, Kuo-Cheng</creator><creator>Chen, Yung-Hsing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131225</creationdate><title>Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres</title><author>Liu, Shih-Chang ; Chen, Yung-I ; Tsai, Hung-Yin ; Lin, Kuo-Cheng ; Chen, Yung-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Atmospheres</topic><topic>Coatings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Glass molding</topic><topic>Ir–Re</topic><topic>Mass production</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Molding (process)</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Protective coatings</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shih-Chang</creatorcontrib><creatorcontrib>Chen, Yung-I</creatorcontrib><creatorcontrib>Tsai, Hung-Yin</creatorcontrib><creatorcontrib>Lin, Kuo-Cheng</creatorcontrib><creatorcontrib>Chen, Yung-Hsing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shih-Chang</au><au>Chen, Yung-I</au><au>Tsai, Hung-Yin</au><au>Lin, Kuo-Cheng</au><au>Chen, Yung-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2013-12-25</date><risdate>2013</risdate><volume>237</volume><spage>105</spage><epage>111</epage><pages>105-111</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Ir–Re coatings are widely applied as protective coatings on glass molding dies. Because the glass molding process in mass production is conducted in an oxygen-containing atmosphere at a high temperature, the protective coatings must endure cyclic annealing treatments. Oxidation and thermal stability of Ir–Re coatings has received scant attention. In this study, Ir–Re coatings were prepared using co-sputtering. Constant-temperature annealing treatments were conducted at 600°C under a 1% O2–Ar atmosphere, which is an oxidation-accelerating atmosphere. The thermal cyclic test was performed at 270 and 600°C under atmospheres of 1% O2–Ar and 15ppm O2–N2, respectively. The 15ppm O2–N2 atmosphere is glass molding atmosphere suitable for mass production. The variations in crystalline structure, nanohardness, surface roughness, and residual stress after various annealing treatments were investigated. The more elevated Ir content coating, namely, Ir0.77Re0.23, displays superior thermal stability compared with the lower Ir content coating, namely, Ir0.53Re0.47. •Residual stress variation of coatings after thermal cyclic annealing was tracked.•Crack or pore formation after annealing resulted in coating failure.•Ir0.77Re0.23 coatings behaved superior thermal stability than Ir0.53Re0.47 coatings.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2013.06.042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2013-12, Vol.237, p.105-111
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1642214360
source Elsevier
subjects Annealing
Applied sciences
Atmospheres
Coatings
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Glass
Glass molding
Ir–Re
Mass production
Materials science
Metals. Metallurgy
Molding (process)
Oxidation
Physics
Production techniques
Protective coatings
Surface treatment
Surface treatments
Thermal stability
title Thermal stability of Ir–Re coatings annealed in oxygen-containing atmospheres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20Ir%E2%80%93Re%20coatings%20annealed%20in%20oxygen-containing%20atmospheres&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Liu,%20Shih-Chang&rft.date=2013-12-25&rft.volume=237&rft.spage=105&rft.epage=111&rft.pages=105-111&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2013.06.042&rft_dat=%3Cproquest_cross%3E1642214360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-69dfe744710c4e1e056db5e9107303559a47215b976bef2d065928dbadaa8eea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642214360&rft_id=info:pmid/&rfr_iscdi=true