Loading…
The seismic cycle at subduction thrusts: 1. Insights from laboratory models
Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolu...
Saved in:
Published in: | Journal of geophysical research. Solid earth 2013-04, Vol.118 (4), p.1483-1501 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73 |
---|---|
cites | cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73 |
container_end_page | 1501 |
container_issue | 4 |
container_start_page | 1483 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 118 |
creator | Corbi, F. Funiciello, F. Moroni, M. van Dinther, Y. Mai, P. M. Dalguer, L. A. Faccenna, C. |
description | Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.
Key Points
We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process |
doi_str_mv | 10.1029/2012JB009481 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642216298</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEgi48QEiceFAIW7StOXG-DMYCBAagluUpi4rtAvErWDfno6hCXHAF1vW71nPLwh2gB8Aj7LDiEM0GnCeyRRWgo0IVBZmIlaryxnEerBN9ML7SvsVyI3gajxBRlhRU1lmZ7ZGZlpGXV50tq3clLUT31FLRwwO2OWUqudJS6z0rmG1yZ03rfMz1rgCa9oK1kpTE27_9M3g4fxsfHIRXt8OL0-Or0MT8zgJrciTPJKRAlVgggXEVnKUYEpTglAIhSgV5CozGRQqlZgmueGS2yJVKEwiNoO9xd037947pFY3FVmsazNF15EGJaP-5ShLe3T3D_riOj_t3X1TSqpUiZ7aX1DWOyKPpX7zVWP8TAPX83D173B7XCzwj6rG2b-sHg3vBzHncu46XKgqavFzqTL-VatEJLF-vBnqp9O70UiMh3ogvgCpZohv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642646863</pqid></control><display><type>article</type><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</creator><creatorcontrib>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</creatorcontrib><description>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.
Key Points
We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009481</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Coastal zone ; Coasts ; Deformation ; Earthquakes ; Geophysics ; laboratory models ; Lithosphere ; Mathematical models ; Rupture ; Seismic activity ; seismic cycle ; Seismic phenomena ; Studies ; subduction megathrust earthquakes ; Subsidence ; Thrust ; Wedges</subject><ispartof>Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1483-1501</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</citedby><cites>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Moroni, M.</creatorcontrib><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Faccenna, C.</creatorcontrib><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.
Key Points
We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</description><subject>Coastal zone</subject><subject>Coasts</subject><subject>Deformation</subject><subject>Earthquakes</subject><subject>Geophysics</subject><subject>laboratory models</subject><subject>Lithosphere</subject><subject>Mathematical models</subject><subject>Rupture</subject><subject>Seismic activity</subject><subject>seismic cycle</subject><subject>Seismic phenomena</subject><subject>Studies</subject><subject>subduction megathrust earthquakes</subject><subject>Subsidence</subject><subject>Thrust</subject><subject>Wedges</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEgi48QEiceFAIW7StOXG-DMYCBAagluUpi4rtAvErWDfno6hCXHAF1vW71nPLwh2gB8Aj7LDiEM0GnCeyRRWgo0IVBZmIlaryxnEerBN9ML7SvsVyI3gajxBRlhRU1lmZ7ZGZlpGXV50tq3clLUT31FLRwwO2OWUqudJS6z0rmG1yZ03rfMz1rgCa9oK1kpTE27_9M3g4fxsfHIRXt8OL0-Or0MT8zgJrciTPJKRAlVgggXEVnKUYEpTglAIhSgV5CozGRQqlZgmueGS2yJVKEwiNoO9xd037947pFY3FVmsazNF15EGJaP-5ShLe3T3D_riOj_t3X1TSqpUiZ7aX1DWOyKPpX7zVWP8TAPX83D173B7XCzwj6rG2b-sHg3vBzHncu46XKgqavFzqTL-VatEJLF-vBnqp9O70UiMh3ogvgCpZohv</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Corbi, F.</creator><creator>Funiciello, F.</creator><creator>Moroni, M.</creator><creator>van Dinther, Y.</creator><creator>Mai, P. M.</creator><creator>Dalguer, L. A.</creator><creator>Faccenna, C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7TB</scope></search><sort><creationdate>201304</creationdate><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><author>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coastal zone</topic><topic>Coasts</topic><topic>Deformation</topic><topic>Earthquakes</topic><topic>Geophysics</topic><topic>laboratory models</topic><topic>Lithosphere</topic><topic>Mathematical models</topic><topic>Rupture</topic><topic>Seismic activity</topic><topic>seismic cycle</topic><topic>Seismic phenomena</topic><topic>Studies</topic><topic>subduction megathrust earthquakes</topic><topic>Subsidence</topic><topic>Thrust</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Moroni, M.</creatorcontrib><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Faccenna, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corbi, F.</au><au>Funiciello, F.</au><au>Moroni, M.</au><au>van Dinther, Y.</au><au>Mai, P. M.</au><au>Dalguer, L. A.</au><au>Faccenna, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2013-04</date><risdate>2013</risdate><volume>118</volume><issue>4</issue><spage>1483</spage><epage>1501</epage><pages>1483-1501</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.
Key Points
We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009481</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1483-1501 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642216298 |
source | Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection |
subjects | Coastal zone Coasts Deformation Earthquakes Geophysics laboratory models Lithosphere Mathematical models Rupture Seismic activity seismic cycle Seismic phenomena Studies subduction megathrust earthquakes Subsidence Thrust Wedges |
title | The seismic cycle at subduction thrusts: 1. Insights from laboratory models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20seismic%20cycle%20at%20subduction%20thrusts:%201.%20Insights%20from%20laboratory%20models&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Corbi,%20F.&rft.date=2013-04&rft.volume=118&rft.issue=4&rft.spage=1483&rft.epage=1501&rft.pages=1483-1501&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2012JB009481&rft_dat=%3Cproquest_cross%3E1642216298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642646863&rft_id=info:pmid/&rfr_iscdi=true |