Loading…

The seismic cycle at subduction thrusts: 1. Insights from laboratory models

Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2013-04, Vol.118 (4), p.1483-1501
Main Authors: Corbi, F., Funiciello, F., Moroni, M., van Dinther, Y., Mai, P. M., Dalguer, L. A., Faccenna, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73
cites cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73
container_end_page 1501
container_issue 4
container_start_page 1483
container_title Journal of geophysical research. Solid earth
container_volume 118
creator Corbi, F.
Funiciello, F.
Moroni, M.
van Dinther, Y.
Mai, P. M.
Dalguer, L. A.
Faccenna, C.
description Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle. Key Points We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process
doi_str_mv 10.1029/2012JB009481
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642216298</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEgi48QEiceFAIW7StOXG-DMYCBAagluUpi4rtAvErWDfno6hCXHAF1vW71nPLwh2gB8Aj7LDiEM0GnCeyRRWgo0IVBZmIlaryxnEerBN9ML7SvsVyI3gajxBRlhRU1lmZ7ZGZlpGXV50tq3clLUT31FLRwwO2OWUqudJS6z0rmG1yZ03rfMz1rgCa9oK1kpTE27_9M3g4fxsfHIRXt8OL0-Or0MT8zgJrciTPJKRAlVgggXEVnKUYEpTglAIhSgV5CozGRQqlZgmueGS2yJVKEwiNoO9xd037947pFY3FVmsazNF15EGJaP-5ShLe3T3D_riOj_t3X1TSqpUiZ7aX1DWOyKPpX7zVWP8TAPX83D173B7XCzwj6rG2b-sHg3vBzHncu46XKgqavFzqTL-VatEJLF-vBnqp9O70UiMh3ogvgCpZohv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642646863</pqid></control><display><type>article</type><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</creator><creatorcontrib>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</creatorcontrib><description>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle. Key Points We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009481</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Coastal zone ; Coasts ; Deformation ; Earthquakes ; Geophysics ; laboratory models ; Lithosphere ; Mathematical models ; Rupture ; Seismic activity ; seismic cycle ; Seismic phenomena ; Studies ; subduction megathrust earthquakes ; Subsidence ; Thrust ; Wedges</subject><ispartof>Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1483-1501</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</citedby><cites>FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Moroni, M.</creatorcontrib><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Faccenna, C.</creatorcontrib><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle. Key Points We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</description><subject>Coastal zone</subject><subject>Coasts</subject><subject>Deformation</subject><subject>Earthquakes</subject><subject>Geophysics</subject><subject>laboratory models</subject><subject>Lithosphere</subject><subject>Mathematical models</subject><subject>Rupture</subject><subject>Seismic activity</subject><subject>seismic cycle</subject><subject>Seismic phenomena</subject><subject>Studies</subject><subject>subduction megathrust earthquakes</subject><subject>Subsidence</subject><subject>Thrust</subject><subject>Wedges</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEgi48QEiceFAIW7StOXG-DMYCBAagluUpi4rtAvErWDfno6hCXHAF1vW71nPLwh2gB8Aj7LDiEM0GnCeyRRWgo0IVBZmIlaryxnEerBN9ML7SvsVyI3gajxBRlhRU1lmZ7ZGZlpGXV50tq3clLUT31FLRwwO2OWUqudJS6z0rmG1yZ03rfMz1rgCa9oK1kpTE27_9M3g4fxsfHIRXt8OL0-Or0MT8zgJrciTPJKRAlVgggXEVnKUYEpTglAIhSgV5CozGRQqlZgmueGS2yJVKEwiNoO9xd037947pFY3FVmsazNF15EGJaP-5ShLe3T3D_riOj_t3X1TSqpUiZ7aX1DWOyKPpX7zVWP8TAPX83D173B7XCzwj6rG2b-sHg3vBzHncu46XKgqavFzqTL-VatEJLF-vBnqp9O70UiMh3ogvgCpZohv</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Corbi, F.</creator><creator>Funiciello, F.</creator><creator>Moroni, M.</creator><creator>van Dinther, Y.</creator><creator>Mai, P. M.</creator><creator>Dalguer, L. A.</creator><creator>Faccenna, C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7TB</scope></search><sort><creationdate>201304</creationdate><title>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</title><author>Corbi, F. ; Funiciello, F. ; Moroni, M. ; van Dinther, Y. ; Mai, P. M. ; Dalguer, L. A. ; Faccenna, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coastal zone</topic><topic>Coasts</topic><topic>Deformation</topic><topic>Earthquakes</topic><topic>Geophysics</topic><topic>laboratory models</topic><topic>Lithosphere</topic><topic>Mathematical models</topic><topic>Rupture</topic><topic>Seismic activity</topic><topic>seismic cycle</topic><topic>Seismic phenomena</topic><topic>Studies</topic><topic>subduction megathrust earthquakes</topic><topic>Subsidence</topic><topic>Thrust</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Moroni, M.</creatorcontrib><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Faccenna, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corbi, F.</au><au>Funiciello, F.</au><au>Moroni, M.</au><au>van Dinther, Y.</au><au>Mai, P. M.</au><au>Dalguer, L. A.</au><au>Faccenna, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The seismic cycle at subduction thrusts: 1. Insights from laboratory models</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2013-04</date><risdate>2013</risdate><volume>118</volume><issue>4</issue><spage>1483</spage><epage>1501</epage><pages>1483-1501</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key‐tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin‐on‐sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi‐periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack‐like fashion. Scaled rupture width‐slip proportionality and seismic moment‐duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle. Key Points We present a novel analog model of the subduction interplate seismic cycleWe compare model behavior with natural observablesOur model offers an efficient and versatile tool for investigating this process</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009481</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1483-1501
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_miscellaneous_1642216298
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Coastal zone
Coasts
Deformation
Earthquakes
Geophysics
laboratory models
Lithosphere
Mathematical models
Rupture
Seismic activity
seismic cycle
Seismic phenomena
Studies
subduction megathrust earthquakes
Subsidence
Thrust
Wedges
title The seismic cycle at subduction thrusts: 1. Insights from laboratory models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20seismic%20cycle%20at%20subduction%20thrusts:%201.%20Insights%20from%20laboratory%20models&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Corbi,%20F.&rft.date=2013-04&rft.volume=118&rft.issue=4&rft.spage=1483&rft.epage=1501&rft.pages=1483-1501&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2012JB009481&rft_dat=%3Cproquest_cross%3E1642216298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5057-c3b7b242616de7ed15c40e41afaf136e1d3f61b69a91d684e87ba040cd86e3a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642646863&rft_id=info:pmid/&rfr_iscdi=true