Loading…
The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment
The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375m and 750m nominal reso...
Saved in:
Published in: | Remote sensing of environment 2014-03, Vol.143, p.85-96 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 96 |
container_issue | |
container_start_page | 85 |
container_title | Remote sensing of environment |
container_volume | 143 |
creator | Schroeder, Wilfrid Oliva, Patricia Giglio, Louis Csiszar, Ivan A. |
description | The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375m and 750m nominal resolutions every 12h or less depending on the latitude. In this study, we introduce a new VIIRS active fire detection algorithm, which is driven primarily by the 375m middle and thermal infrared imagery data. The algorithm builds on the well-established MODIS Fire and Thermal Anomalies product using a contextual approach to detect both day and nighttime biomass burning and other thermal anomalies. Here we present the fire algorithm's design and implementation, including important information describing the input data characteristics and potential artifacts associated with pixel saturation and the South Atlantic Magnetic Anomaly, both found to affect the middle infrared channel data. Initial assessment using results derived from the global processing of the algorithm indicated small, although variable, commission errors ( |
doi_str_mv | 10.1016/j.rse.2013.12.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425713004483</els_id><sourcerecordid>1627966121</sourcerecordid><originalsourceid>FETCH-LOGICAL-e188t-ef2db5750761b13ca690f737a27bad4804bc704e64a935659162912acdcb22ce3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EEqXwAey8ZJPgcWI7gVVV8aiEQILC1nLsKXWVJiV2y-_jUj6A1Wiko6s7cwi5BJYDA3m9yoeAOWdQ5MBzxqojMoJK1RlTrDwmI8aKMiu5UKfkLIQVYyAqBSNi50ukz_hNP2az1zdaKLGmxka_Q7rwA1KHEdPad9SZaOhm6N3Wxhs6aT_7wcflOhHBDn7zy5jOUd_56E1LTQgYwhq7eE5OFqYNePE3x-T9_m4-fcyeXh5m08lThlBVMcMFd41QgikJDRTWyJotVKEMV41xZcXKxqZjUJamLoQUNUheAzfW2YZzi8WYXB1yU8uvLYao1z5YbFvTYb8NGmTJOchaiH-gXNVSAoeE3h5QTNV3HgcdrMfOokv_sVG73mtgem9Br3SyoPcWNHCdLBQ_dAd7ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627966121</pqid></control><display><type>article</type><title>The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment</title><source>Elsevier</source><creator>Schroeder, Wilfrid ; Oliva, Patricia ; Giglio, Louis ; Csiszar, Ivan A.</creator><creatorcontrib>Schroeder, Wilfrid ; Oliva, Patricia ; Giglio, Louis ; Csiszar, Ivan A.</creatorcontrib><description>The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375m and 750m nominal resolutions every 12h or less depending on the latitude. In this study, we introduce a new VIIRS active fire detection algorithm, which is driven primarily by the 375m middle and thermal infrared imagery data. The algorithm builds on the well-established MODIS Fire and Thermal Anomalies product using a contextual approach to detect both day and nighttime biomass burning and other thermal anomalies. Here we present the fire algorithm's design and implementation, including important information describing the input data characteristics and potential artifacts associated with pixel saturation and the South Atlantic Magnetic Anomaly, both found to affect the middle infrared channel data. Initial assessment using results derived from the global processing of the algorithm indicated small, although variable, commission errors (<1.2%) for nominal confidence fire pixels. We achieved improved performance using the 375m active fire data compared to the VIIRS 750m baseline fire product, resulting in a 3× and 25× factor increase in the absolute number of fire pixels detected using day and nighttime data, respectively. Similarly, VIIRS 375m fire data showed significantly superior mapping capabilities compared to current MODIS fire detection data with improved consistency of fire perimeter delineation for biomass burning lasting multiple days.
•New active fire detection algorithm developed for the new VIIRS 375m imager data.•Theoretical minimum detectable night fire equivalent to ~5m2 and ~1000K fire•Nominal confidence fire detections showed average commission error of 1.2%.•VIIRS 375m fire data provide improved performance compared to 750m product.•VIIRS 375m data provide more coherent fire mapping compared to MODIS 1km fire data.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2013.12.008</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Active fire detection ; Algorithms ; Assessments ; Biomass burning ; Channels ; Construction ; Fire detection ; Fires ; MODIS ; Pixels ; S-NPP/VIIRS</subject><ispartof>Remote sensing of environment, 2014-03, Vol.143, p.85-96</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Schroeder, Wilfrid</creatorcontrib><creatorcontrib>Oliva, Patricia</creatorcontrib><creatorcontrib>Giglio, Louis</creatorcontrib><creatorcontrib>Csiszar, Ivan A.</creatorcontrib><title>The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment</title><title>Remote sensing of environment</title><description>The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375m and 750m nominal resolutions every 12h or less depending on the latitude. In this study, we introduce a new VIIRS active fire detection algorithm, which is driven primarily by the 375m middle and thermal infrared imagery data. The algorithm builds on the well-established MODIS Fire and Thermal Anomalies product using a contextual approach to detect both day and nighttime biomass burning and other thermal anomalies. Here we present the fire algorithm's design and implementation, including important information describing the input data characteristics and potential artifacts associated with pixel saturation and the South Atlantic Magnetic Anomaly, both found to affect the middle infrared channel data. Initial assessment using results derived from the global processing of the algorithm indicated small, although variable, commission errors (<1.2%) for nominal confidence fire pixels. We achieved improved performance using the 375m active fire data compared to the VIIRS 750m baseline fire product, resulting in a 3× and 25× factor increase in the absolute number of fire pixels detected using day and nighttime data, respectively. Similarly, VIIRS 375m fire data showed significantly superior mapping capabilities compared to current MODIS fire detection data with improved consistency of fire perimeter delineation for biomass burning lasting multiple days.
•New active fire detection algorithm developed for the new VIIRS 375m imager data.•Theoretical minimum detectable night fire equivalent to ~5m2 and ~1000K fire•Nominal confidence fire detections showed average commission error of 1.2%.•VIIRS 375m fire data provide improved performance compared to 750m product.•VIIRS 375m data provide more coherent fire mapping compared to MODIS 1km fire data.</description><subject>Active fire detection</subject><subject>Algorithms</subject><subject>Assessments</subject><subject>Biomass burning</subject><subject>Channels</subject><subject>Construction</subject><subject>Fire detection</subject><subject>Fires</subject><subject>MODIS</subject><subject>Pixels</subject><subject>S-NPP/VIIRS</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EEqXwAey8ZJPgcWI7gVVV8aiEQILC1nLsKXWVJiV2y-_jUj6A1Wiko6s7cwi5BJYDA3m9yoeAOWdQ5MBzxqojMoJK1RlTrDwmI8aKMiu5UKfkLIQVYyAqBSNi50ukz_hNP2az1zdaKLGmxka_Q7rwA1KHEdPad9SZaOhm6N3Wxhs6aT_7wcflOhHBDn7zy5jOUd_56E1LTQgYwhq7eE5OFqYNePE3x-T9_m4-fcyeXh5m08lThlBVMcMFd41QgikJDRTWyJotVKEMV41xZcXKxqZjUJamLoQUNUheAzfW2YZzi8WYXB1yU8uvLYao1z5YbFvTYb8NGmTJOchaiH-gXNVSAoeE3h5QTNV3HgcdrMfOokv_sVG73mtgem9Br3SyoPcWNHCdLBQ_dAd7ew</recordid><startdate>20140305</startdate><enddate>20140305</enddate><creator>Schroeder, Wilfrid</creator><creator>Oliva, Patricia</creator><creator>Giglio, Louis</creator><creator>Csiszar, Ivan A.</creator><general>Elsevier Inc</general><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140305</creationdate><title>The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment</title><author>Schroeder, Wilfrid ; Oliva, Patricia ; Giglio, Louis ; Csiszar, Ivan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e188t-ef2db5750761b13ca690f737a27bad4804bc704e64a935659162912acdcb22ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active fire detection</topic><topic>Algorithms</topic><topic>Assessments</topic><topic>Biomass burning</topic><topic>Channels</topic><topic>Construction</topic><topic>Fire detection</topic><topic>Fires</topic><topic>MODIS</topic><topic>Pixels</topic><topic>S-NPP/VIIRS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Wilfrid</creatorcontrib><creatorcontrib>Oliva, Patricia</creatorcontrib><creatorcontrib>Giglio, Louis</creatorcontrib><creatorcontrib>Csiszar, Ivan A.</creatorcontrib><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Wilfrid</au><au>Oliva, Patricia</au><au>Giglio, Louis</au><au>Csiszar, Ivan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment</atitle><jtitle>Remote sensing of environment</jtitle><date>2014-03-05</date><risdate>2014</risdate><volume>143</volume><spage>85</spage><epage>96</epage><pages>85-96</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375m and 750m nominal resolutions every 12h or less depending on the latitude. In this study, we introduce a new VIIRS active fire detection algorithm, which is driven primarily by the 375m middle and thermal infrared imagery data. The algorithm builds on the well-established MODIS Fire and Thermal Anomalies product using a contextual approach to detect both day and nighttime biomass burning and other thermal anomalies. Here we present the fire algorithm's design and implementation, including important information describing the input data characteristics and potential artifacts associated with pixel saturation and the South Atlantic Magnetic Anomaly, both found to affect the middle infrared channel data. Initial assessment using results derived from the global processing of the algorithm indicated small, although variable, commission errors (<1.2%) for nominal confidence fire pixels. We achieved improved performance using the 375m active fire data compared to the VIIRS 750m baseline fire product, resulting in a 3× and 25× factor increase in the absolute number of fire pixels detected using day and nighttime data, respectively. Similarly, VIIRS 375m fire data showed significantly superior mapping capabilities compared to current MODIS fire detection data with improved consistency of fire perimeter delineation for biomass burning lasting multiple days.
•New active fire detection algorithm developed for the new VIIRS 375m imager data.•Theoretical minimum detectable night fire equivalent to ~5m2 and ~1000K fire•Nominal confidence fire detections showed average commission error of 1.2%.•VIIRS 375m fire data provide improved performance compared to 750m product.•VIIRS 375m data provide more coherent fire mapping compared to MODIS 1km fire data.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2013.12.008</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2014-03, Vol.143, p.85-96 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642216955 |
source | Elsevier |
subjects | Active fire detection Algorithms Assessments Biomass burning Channels Construction Fire detection Fires MODIS Pixels S-NPP/VIIRS |
title | The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20New%20VIIRS%20375m%20active%20fire%20detection%20data%20product:%20Algorithm%20description%20and%20initial%20assessment&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Schroeder,%20Wilfrid&rft.date=2014-03-05&rft.volume=143&rft.spage=85&rft.epage=96&rft.pages=85-96&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2013.12.008&rft_dat=%3Cproquest_elsev%3E1627966121%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e188t-ef2db5750761b13ca690f737a27bad4804bc704e64a935659162912acdcb22ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627966121&rft_id=info:pmid/&rfr_iscdi=true |