Loading…

Inertial particle relative velocity statistics in homogeneous isotropic turbulence

In the present study, we investigate the scaling of relative velocity structure functions, of order two and higher, for inertial particles, both in the dissipation range and the inertial subrange using direct numerical simulations (DNS). Within the inertial subrange our findings show that contrary t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2012-04, Vol.696, p.45-66
Main Authors: Salazar, Juan P. L. C., Collins, Lance R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3
cites cdi_FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3
container_end_page 66
container_issue
container_start_page 45
container_title Journal of fluid mechanics
container_volume 696
creator Salazar, Juan P. L. C.
Collins, Lance R.
description In the present study, we investigate the scaling of relative velocity structure functions, of order two and higher, for inertial particles, both in the dissipation range and the inertial subrange using direct numerical simulations (DNS). Within the inertial subrange our findings show that contrary to the well-known attenuation in the tails of the one-point acceleration probability density function (p.d.f.) with increasing inertia (Bec et al., J. Fluid Mech., vol. 550, 2006, pp. 349–358), the opposite occurs with the velocity structure function at sufficiently large Stokes numbers. We observe reduced scaling exponents for the structure function when compared to those of the fluid, and correspondingly broader p.d.f.s, similar to what occurs with a passive scalar. DNS allows us to isolate the two effects of inertia, namely biased sampling of the velocity field, a result of preferential concentration, and filtering, i.e. the tendency for the inertial particle velocity to attenuate the velocity fluctuations in the fluid. By isolating these effects, we show that sampling is playing the dominant role for low-order moments of the structure function, whereas filtering accounts for most of the scaling behaviour observed with the higher-order structure functions in the inertial subrange. In the dissipation range, we see evidence of so-called ‘crossing trajectories’, the ‘sling effect’ or ‘caustics’, and find good agreement with the theory put forth by Wilkinson et al. (Phys. Rev. Lett., vol. 97, 2006, 048501) and Falkovich & Pumir (J. Atmos. Sci., vol. 64, 2007, 4497) for Stokes numbers greater than 0.5. We also look at the scaling exponents within the context of the model proposed by Bec et al. (J. Fluid Mech., vol. 646, 2010, pp. 527–536). Another interesting finding is that inertial particles at low Stokes numbers sample regions of higher kinetic energy than the fluid particle field, the converse occurring at high Stokes numbers. The trend at low Stokes numbers is predicted by the theory of Chun et al. (J. Fluid Mech., vol. 536, 2005, 219–251). This work is relevant to modelling the particle collision rate (Sundaram & Collins, J. Fluid Mech., vol. 335, 1997, pp. 75–109), and highlights the interesting array of phenomena induced by inertia.
doi_str_mv 10.1017/jfm.2012.2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642218836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_2</cupid><sourcerecordid>2622376831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3</originalsourceid><addsrcrecordid>eNqFkV9LwzAUxYMoOKcvfoIiCCJ25qZt0j7K8M9gIIg-hzRLZkba1KQd7NubuaEggk-H3PzuufdyEDoHPAEM7HalmwnBQCbkAI0gp1XKaF4cohHGhKQABB-jkxBWGEOGKzZCL7NW-d4Im3QiqrQq8cqK3qxVslbWSdNvktDHQoi_ITFt8u4at1StckN8Btd71xmZ9IOvB6taqU7RkRY2qLO9jtHbw_3r9CmdPz_OpnfzVOYF61MK2UKykmmtC1oAY-WihlrXJS1BalFrkEQQqRdKY6k1w7VUBY6CmaQl0dkYXe18O-8-BhV63pgglbXiazcONCcEyjKj_6MZFBRTyiCiF7_QlRt8Gw_hFSWEVEW19bveQdK7ELzSvPOmEX7DAfNtEDwGwbdBcBLhy72jCFJY7UUrTfjuIEU8PafbyTd7U9HU3iyW6mf0H7afhZqYjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>962229596</pqid></control><display><type>article</type><title>Inertial particle relative velocity statistics in homogeneous isotropic turbulence</title><source>Cambridge Journals Online</source><creator>Salazar, Juan P. L. C. ; Collins, Lance R.</creator><creatorcontrib>Salazar, Juan P. L. C. ; Collins, Lance R.</creatorcontrib><description>In the present study, we investigate the scaling of relative velocity structure functions, of order two and higher, for inertial particles, both in the dissipation range and the inertial subrange using direct numerical simulations (DNS). Within the inertial subrange our findings show that contrary to the well-known attenuation in the tails of the one-point acceleration probability density function (p.d.f.) with increasing inertia (Bec et al., J. Fluid Mech., vol. 550, 2006, pp. 349–358), the opposite occurs with the velocity structure function at sufficiently large Stokes numbers. We observe reduced scaling exponents for the structure function when compared to those of the fluid, and correspondingly broader p.d.f.s, similar to what occurs with a passive scalar. DNS allows us to isolate the two effects of inertia, namely biased sampling of the velocity field, a result of preferential concentration, and filtering, i.e. the tendency for the inertial particle velocity to attenuate the velocity fluctuations in the fluid. By isolating these effects, we show that sampling is playing the dominant role for low-order moments of the structure function, whereas filtering accounts for most of the scaling behaviour observed with the higher-order structure functions in the inertial subrange. In the dissipation range, we see evidence of so-called ‘crossing trajectories’, the ‘sling effect’ or ‘caustics’, and find good agreement with the theory put forth by Wilkinson et al. (Phys. Rev. Lett., vol. 97, 2006, 048501) and Falkovich &amp; Pumir (J. Atmos. Sci., vol. 64, 2007, 4497) for Stokes numbers greater than 0.5. We also look at the scaling exponents within the context of the model proposed by Bec et al. (J. Fluid Mech., vol. 646, 2010, pp. 527–536). Another interesting finding is that inertial particles at low Stokes numbers sample regions of higher kinetic energy than the fluid particle field, the converse occurring at high Stokes numbers. The trend at low Stokes numbers is predicted by the theory of Chun et al. (J. Fluid Mech., vol. 536, 2005, 219–251). This work is relevant to modelling the particle collision rate (Sundaram &amp; Collins, J. Fluid Mech., vol. 335, 1997, pp. 75–109), and highlights the interesting array of phenomena induced by inertia.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.2</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Fundamental areas of phenomenology (including applications) ; Inertia ; Inertial ; Isotropic turbulence; homogeneous turbulence ; Kinetic energy ; Mathematical analysis ; Mathematical models ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Particle physics ; Physics ; Simulation ; Stokes number ; Turbulence ; Turbulence simulation and modeling ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Velocity</subject><ispartof>Journal of fluid mechanics, 2012-04, Vol.696, p.45-66</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3</citedby><cites>FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201200002X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25778461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, Juan P. L. C.</creatorcontrib><creatorcontrib>Collins, Lance R.</creatorcontrib><title>Inertial particle relative velocity statistics in homogeneous isotropic turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In the present study, we investigate the scaling of relative velocity structure functions, of order two and higher, for inertial particles, both in the dissipation range and the inertial subrange using direct numerical simulations (DNS). Within the inertial subrange our findings show that contrary to the well-known attenuation in the tails of the one-point acceleration probability density function (p.d.f.) with increasing inertia (Bec et al., J. Fluid Mech., vol. 550, 2006, pp. 349–358), the opposite occurs with the velocity structure function at sufficiently large Stokes numbers. We observe reduced scaling exponents for the structure function when compared to those of the fluid, and correspondingly broader p.d.f.s, similar to what occurs with a passive scalar. DNS allows us to isolate the two effects of inertia, namely biased sampling of the velocity field, a result of preferential concentration, and filtering, i.e. the tendency for the inertial particle velocity to attenuate the velocity fluctuations in the fluid. By isolating these effects, we show that sampling is playing the dominant role for low-order moments of the structure function, whereas filtering accounts for most of the scaling behaviour observed with the higher-order structure functions in the inertial subrange. In the dissipation range, we see evidence of so-called ‘crossing trajectories’, the ‘sling effect’ or ‘caustics’, and find good agreement with the theory put forth by Wilkinson et al. (Phys. Rev. Lett., vol. 97, 2006, 048501) and Falkovich &amp; Pumir (J. Atmos. Sci., vol. 64, 2007, 4497) for Stokes numbers greater than 0.5. We also look at the scaling exponents within the context of the model proposed by Bec et al. (J. Fluid Mech., vol. 646, 2010, pp. 527–536). Another interesting finding is that inertial particles at low Stokes numbers sample regions of higher kinetic energy than the fluid particle field, the converse occurring at high Stokes numbers. The trend at low Stokes numbers is predicted by the theory of Chun et al. (J. Fluid Mech., vol. 536, 2005, 219–251). This work is relevant to modelling the particle collision rate (Sundaram &amp; Collins, J. Fluid Mech., vol. 335, 1997, pp. 75–109), and highlights the interesting array of phenomena induced by inertia.</description><subject>Computational fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inertia</subject><subject>Inertial</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Simulation</subject><subject>Stokes number</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkV9LwzAUxYMoOKcvfoIiCCJ25qZt0j7K8M9gIIg-hzRLZkba1KQd7NubuaEggk-H3PzuufdyEDoHPAEM7HalmwnBQCbkAI0gp1XKaF4cohHGhKQABB-jkxBWGEOGKzZCL7NW-d4Im3QiqrQq8cqK3qxVslbWSdNvktDHQoi_ITFt8u4at1StckN8Btd71xmZ9IOvB6taqU7RkRY2qLO9jtHbw_3r9CmdPz_OpnfzVOYF61MK2UKykmmtC1oAY-WihlrXJS1BalFrkEQQqRdKY6k1w7VUBY6CmaQl0dkYXe18O-8-BhV63pgglbXiazcONCcEyjKj_6MZFBRTyiCiF7_QlRt8Gw_hFSWEVEW19bveQdK7ELzSvPOmEX7DAfNtEDwGwbdBcBLhy72jCFJY7UUrTfjuIEU8PafbyTd7U9HU3iyW6mf0H7afhZqYjA</recordid><startdate>20120410</startdate><enddate>20120410</enddate><creator>Salazar, Juan P. L. C.</creator><creator>Collins, Lance R.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120410</creationdate><title>Inertial particle relative velocity statistics in homogeneous isotropic turbulence</title><author>Salazar, Juan P. L. C. ; Collins, Lance R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inertia</topic><topic>Inertial</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Simulation</topic><topic>Stokes number</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, Juan P. L. C.</creatorcontrib><creatorcontrib>Collins, Lance R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, Juan P. L. C.</au><au>Collins, Lance R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial particle relative velocity statistics in homogeneous isotropic turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-04-10</date><risdate>2012</risdate><volume>696</volume><spage>45</spage><epage>66</epage><pages>45-66</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>In the present study, we investigate the scaling of relative velocity structure functions, of order two and higher, for inertial particles, both in the dissipation range and the inertial subrange using direct numerical simulations (DNS). Within the inertial subrange our findings show that contrary to the well-known attenuation in the tails of the one-point acceleration probability density function (p.d.f.) with increasing inertia (Bec et al., J. Fluid Mech., vol. 550, 2006, pp. 349–358), the opposite occurs with the velocity structure function at sufficiently large Stokes numbers. We observe reduced scaling exponents for the structure function when compared to those of the fluid, and correspondingly broader p.d.f.s, similar to what occurs with a passive scalar. DNS allows us to isolate the two effects of inertia, namely biased sampling of the velocity field, a result of preferential concentration, and filtering, i.e. the tendency for the inertial particle velocity to attenuate the velocity fluctuations in the fluid. By isolating these effects, we show that sampling is playing the dominant role for low-order moments of the structure function, whereas filtering accounts for most of the scaling behaviour observed with the higher-order structure functions in the inertial subrange. In the dissipation range, we see evidence of so-called ‘crossing trajectories’, the ‘sling effect’ or ‘caustics’, and find good agreement with the theory put forth by Wilkinson et al. (Phys. Rev. Lett., vol. 97, 2006, 048501) and Falkovich &amp; Pumir (J. Atmos. Sci., vol. 64, 2007, 4497) for Stokes numbers greater than 0.5. We also look at the scaling exponents within the context of the model proposed by Bec et al. (J. Fluid Mech., vol. 646, 2010, pp. 527–536). Another interesting finding is that inertial particles at low Stokes numbers sample regions of higher kinetic energy than the fluid particle field, the converse occurring at high Stokes numbers. The trend at low Stokes numbers is predicted by the theory of Chun et al. (J. Fluid Mech., vol. 536, 2005, 219–251). This work is relevant to modelling the particle collision rate (Sundaram &amp; Collins, J. Fluid Mech., vol. 335, 1997, pp. 75–109), and highlights the interesting array of phenomena induced by inertia.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.2</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-04, Vol.696, p.45-66
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642218836
source Cambridge Journals Online
subjects Computational fluid dynamics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Fundamental areas of phenomenology (including applications)
Inertia
Inertial
Isotropic turbulence
homogeneous turbulence
Kinetic energy
Mathematical analysis
Mathematical models
Multiphase and particle-laden flows
Nonhomogeneous flows
Particle physics
Physics
Simulation
Stokes number
Turbulence
Turbulence simulation and modeling
Turbulent flow
Turbulent flows, convection, and heat transfer
Velocity
title Inertial particle relative velocity statistics in homogeneous isotropic turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20particle%20relative%20velocity%20statistics%20in%20homogeneous%20isotropic%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Salazar,%20Juan%20P.%20L.%20C.&rft.date=2012-04-10&rft.volume=696&rft.spage=45&rft.epage=66&rft.pages=45-66&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.2&rft_dat=%3Cproquest_cross%3E2622376831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-613dc787fff5651778db1bfb8681cfabf1c2a2cfdef0cff70bce5070b07c682f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=962229596&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_2&rfr_iscdi=true