Loading…
A 10-Gb/s Low Jitter Single-Loop Clock and Data Recovery Circuit With Rotational Phase Frequency Detector
This paper presents a rotational phase frequency detector (RPFD) for reference-less clock and data recovery circuit (CDR). The proposed RPFD changes the bang-bang phase detector (BBPD) characteristic from a bidirectional phase detection to an unilateral phase detection for capturing clock frequency....
Saved in:
Published in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-11, Vol.61 (11), p.3278-3287 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a rotational phase frequency detector (RPFD) for reference-less clock and data recovery circuit (CDR). The proposed RPFD changes the bang-bang phase detector (BBPD) characteristic from a bidirectional phase detection to an unilateral phase detection for capturing clock frequency. The phase-and-frequency lock loop (PFLL) locks the clock frequency and the clock phase alternatively. The single-loop CDR replaces the dual-loop CDR so as to eliminate the noise contribution from the frequency lock loop (FLL). This proposed design is fabricated in TSMC mixed-signal 1P9M 90-nm standard CMOS process with overall die size of 0.71- mm 2 . With input 10-Gb/s data of a 2 31 -1 PRBS, the CDR tracks free running clock over the capture range of 1.48 GHz and locks in the acquisition time of 20 μs. At the same time, the peak-to-peak jitters show only 5.0 ps in the recovered clock and exhibits 15.11 ps in the recovered data. The measured chip consumes 92 mW with 1.0-V supply voltage. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2014.2327291 |