Loading…
Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells
The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are imp...
Saved in:
Published in: | Solar energy materials and solar cells 2014-01, Vol.120, p.143-150 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393 |
container_end_page | 150 |
container_issue | |
container_start_page | 143 |
container_title | Solar energy materials and solar cells |
container_volume | 120 |
creator | Bugnon, Grégory Parascandolo, Gaetano Hänni, Simon Stuckelberger, Michael Charrière, Mathieu Despeisse, Matthieu Meillaud, Fanny Ballif, Christophe |
description | The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface.
[Display omitted]
•We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process. |
doi_str_mv | 10.1016/j.solmat.2013.08.034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642223822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481300442X</els_id><sourcerecordid>1642223822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</originalsourceid><addsrcrecordid>eNqNkb-O1DAQxi0EEsvBG1C4QaJJGHvsxGmQ0Il_0kkUQG15nTHnlZMsdhaxHe_AG_IkeLWrKzmK8bj4zcyn72PsuYBWgOhe7dqypMmtrQSBLZgWUD1gG2H6oUEczEO2gUH2DUhlHrMnpewAQHaoNuzb55iiX2a-_Iwj8e0hBMo8uWN93crXW-L7P79-Rx7nlXJwnuqPu2nJ-9vlULibRz5Fnxefj2V1KcWZeLnsrKpc5p5SKk_Zo-BSoWeXfsW-vnv75fpDc_Pp_cfrNzeN1yDWxmwHaQBQS4-9CGCGQVPfB9OBFtpvyUujvUFpAihE550WY9jKXmiFHge8Yi_Pe_d5-X6gstoplpMCN1PVa0WnpJRoat2LalRGa4DuP1AJaMBIU1F1RqsnpWQKdp_j5PLRCrCntOzOntOyp7QsGFvTqmMvLhdc8S6F7GYfy91sNUVp1FC512eOqok_ImVbfKTZ0xgz-dWOS_z3ob_Oxays</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520380828</pqid></control><display><type>article</type><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><source>ScienceDirect Freedom Collection</source><creator>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</creator><creatorcontrib>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</creatorcontrib><description>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface.
[Display omitted]
•We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2013.08.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Applied sciences ; Boron cross-contamination ; Buffer layers ; Current density ; Deposition ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Gain ; Microcrystalline silicon nucleation ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; p–i interface ; Silicon ; Silicon oxide ; Silicon oxides ; Solar cell ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Solar energy materials and solar cells, 2014-01, Vol.120, p.143-150</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</citedby><cites>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28045350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugnon, Grégory</creatorcontrib><creatorcontrib>Parascandolo, Gaetano</creatorcontrib><creatorcontrib>Hänni, Simon</creatorcontrib><creatorcontrib>Stuckelberger, Michael</creatorcontrib><creatorcontrib>Charrière, Mathieu</creatorcontrib><creatorcontrib>Despeisse, Matthieu</creatorcontrib><creatorcontrib>Meillaud, Fanny</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><title>Solar energy materials and solar cells</title><description>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface.
[Display omitted]
•We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</description><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>Boron cross-contamination</subject><subject>Buffer layers</subject><subject>Current density</subject><subject>Deposition</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Microcrystalline silicon nucleation</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>p–i interface</subject><subject>Silicon</subject><subject>Silicon oxide</subject><subject>Silicon oxides</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkb-O1DAQxi0EEsvBG1C4QaJJGHvsxGmQ0Il_0kkUQG15nTHnlZMsdhaxHe_AG_IkeLWrKzmK8bj4zcyn72PsuYBWgOhe7dqypMmtrQSBLZgWUD1gG2H6oUEczEO2gUH2DUhlHrMnpewAQHaoNuzb55iiX2a-_Iwj8e0hBMo8uWN93crXW-L7P79-Rx7nlXJwnuqPu2nJ-9vlULibRz5Fnxefj2V1KcWZeLnsrKpc5p5SKk_Zo-BSoWeXfsW-vnv75fpDc_Pp_cfrNzeN1yDWxmwHaQBQS4-9CGCGQVPfB9OBFtpvyUujvUFpAihE550WY9jKXmiFHge8Yi_Pe_d5-X6gstoplpMCN1PVa0WnpJRoat2LalRGa4DuP1AJaMBIU1F1RqsnpWQKdp_j5PLRCrCntOzOntOyp7QsGFvTqmMvLhdc8S6F7GYfy91sNUVp1FC512eOqok_ImVbfKTZ0xgz-dWOS_z3ob_Oxays</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Bugnon, Grégory</creator><creator>Parascandolo, Gaetano</creator><creator>Hänni, Simon</creator><creator>Stuckelberger, Michael</creator><creator>Charrière, Mathieu</creator><creator>Despeisse, Matthieu</creator><creator>Meillaud, Fanny</creator><creator>Ballif, Christophe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><author>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>Boron cross-contamination</topic><topic>Buffer layers</topic><topic>Current density</topic><topic>Deposition</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Microcrystalline silicon nucleation</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>p–i interface</topic><topic>Silicon</topic><topic>Silicon oxide</topic><topic>Silicon oxides</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugnon, Grégory</creatorcontrib><creatorcontrib>Parascandolo, Gaetano</creatorcontrib><creatorcontrib>Hänni, Simon</creatorcontrib><creatorcontrib>Stuckelberger, Michael</creatorcontrib><creatorcontrib>Charrière, Mathieu</creatorcontrib><creatorcontrib>Despeisse, Matthieu</creatorcontrib><creatorcontrib>Meillaud, Fanny</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugnon, Grégory</au><au>Parascandolo, Gaetano</au><au>Hänni, Simon</au><au>Stuckelberger, Michael</au><au>Charrière, Mathieu</au><au>Despeisse, Matthieu</au><au>Meillaud, Fanny</au><au>Ballif, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-01</date><risdate>2014</risdate><volume>120</volume><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface.
[Display omitted]
•We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2013.08.034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2014-01, Vol.120, p.143-150 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642223822 |
source | ScienceDirect Freedom Collection |
subjects | Amorphous silicon Applied sciences Boron cross-contamination Buffer layers Current density Deposition Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Energy Exact sciences and technology Gain Microcrystalline silicon nucleation Natural energy Photoelectric conversion Photovoltaic cells Photovoltaic conversion p–i interface Silicon Silicon oxide Silicon oxides Solar cell Solar cells Solar cells. Photoelectrochemical cells Solar energy |
title | Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20oxide%20buffer%20layer%20at%20the%20p%E2%80%93i%20interface%20in%20amorphous%20and%20microcrystalline%20silicon%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Bugnon,%20Gr%C3%A9gory&rft.date=2014-01&rft.volume=120&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2013.08.034&rft_dat=%3Cproquest_cross%3E1642223822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1520380828&rft_id=info:pmid/&rfr_iscdi=true |