Loading…

Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells

The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are imp...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2014-01, Vol.120, p.143-150
Main Authors: Bugnon, Grégory, Parascandolo, Gaetano, Hänni, Simon, Stuckelberger, Michael, Charrière, Mathieu, Despeisse, Matthieu, Meillaud, Fanny, Ballif, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393
cites cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393
container_end_page 150
container_issue
container_start_page 143
container_title Solar energy materials and solar cells
container_volume 120
creator Bugnon, Grégory
Parascandolo, Gaetano
Hänni, Simon
Stuckelberger, Michael
Charrière, Mathieu
Despeisse, Matthieu
Meillaud, Fanny
Ballif, Christophe
description The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface. [Display omitted] •We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.
doi_str_mv 10.1016/j.solmat.2013.08.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642223822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481300442X</els_id><sourcerecordid>1642223822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</originalsourceid><addsrcrecordid>eNqNkb-O1DAQxi0EEsvBG1C4QaJJGHvsxGmQ0Il_0kkUQG15nTHnlZMsdhaxHe_AG_IkeLWrKzmK8bj4zcyn72PsuYBWgOhe7dqypMmtrQSBLZgWUD1gG2H6oUEczEO2gUH2DUhlHrMnpewAQHaoNuzb55iiX2a-_Iwj8e0hBMo8uWN93crXW-L7P79-Rx7nlXJwnuqPu2nJ-9vlULibRz5Fnxefj2V1KcWZeLnsrKpc5p5SKk_Zo-BSoWeXfsW-vnv75fpDc_Pp_cfrNzeN1yDWxmwHaQBQS4-9CGCGQVPfB9OBFtpvyUujvUFpAihE550WY9jKXmiFHge8Yi_Pe_d5-X6gstoplpMCN1PVa0WnpJRoat2LalRGa4DuP1AJaMBIU1F1RqsnpWQKdp_j5PLRCrCntOzOntOyp7QsGFvTqmMvLhdc8S6F7GYfy91sNUVp1FC512eOqok_ImVbfKTZ0xgz-dWOS_z3ob_Oxays</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520380828</pqid></control><display><type>article</type><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><source>ScienceDirect Freedom Collection</source><creator>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</creator><creatorcontrib>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</creatorcontrib><description>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface. [Display omitted] •We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2013.08.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Applied sciences ; Boron cross-contamination ; Buffer layers ; Current density ; Deposition ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Gain ; Microcrystalline silicon nucleation ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; p–i interface ; Silicon ; Silicon oxide ; Silicon oxides ; Solar cell ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Solar energy materials and solar cells, 2014-01, Vol.120, p.143-150</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</citedby><cites>FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28045350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugnon, Grégory</creatorcontrib><creatorcontrib>Parascandolo, Gaetano</creatorcontrib><creatorcontrib>Hänni, Simon</creatorcontrib><creatorcontrib>Stuckelberger, Michael</creatorcontrib><creatorcontrib>Charrière, Mathieu</creatorcontrib><creatorcontrib>Despeisse, Matthieu</creatorcontrib><creatorcontrib>Meillaud, Fanny</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><title>Solar energy materials and solar cells</title><description>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface. [Display omitted] •We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</description><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>Boron cross-contamination</subject><subject>Buffer layers</subject><subject>Current density</subject><subject>Deposition</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Microcrystalline silicon nucleation</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>p–i interface</subject><subject>Silicon</subject><subject>Silicon oxide</subject><subject>Silicon oxides</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkb-O1DAQxi0EEsvBG1C4QaJJGHvsxGmQ0Il_0kkUQG15nTHnlZMsdhaxHe_AG_IkeLWrKzmK8bj4zcyn72PsuYBWgOhe7dqypMmtrQSBLZgWUD1gG2H6oUEczEO2gUH2DUhlHrMnpewAQHaoNuzb55iiX2a-_Iwj8e0hBMo8uWN93crXW-L7P79-Rx7nlXJwnuqPu2nJ-9vlULibRz5Fnxefj2V1KcWZeLnsrKpc5p5SKk_Zo-BSoWeXfsW-vnv75fpDc_Pp_cfrNzeN1yDWxmwHaQBQS4-9CGCGQVPfB9OBFtpvyUujvUFpAihE550WY9jKXmiFHge8Yi_Pe_d5-X6gstoplpMCN1PVa0WnpJRoat2LalRGa4DuP1AJaMBIU1F1RqsnpWQKdp_j5PLRCrCntOzOntOyp7QsGFvTqmMvLhdc8S6F7GYfy91sNUVp1FC512eOqok_ImVbfKTZ0xgz-dWOS_z3ob_Oxays</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Bugnon, Grégory</creator><creator>Parascandolo, Gaetano</creator><creator>Hänni, Simon</creator><creator>Stuckelberger, Michael</creator><creator>Charrière, Mathieu</creator><creator>Despeisse, Matthieu</creator><creator>Meillaud, Fanny</creator><creator>Ballif, Christophe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</title><author>Bugnon, Grégory ; Parascandolo, Gaetano ; Hänni, Simon ; Stuckelberger, Michael ; Charrière, Mathieu ; Despeisse, Matthieu ; Meillaud, Fanny ; Ballif, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>Boron cross-contamination</topic><topic>Buffer layers</topic><topic>Current density</topic><topic>Deposition</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Microcrystalline silicon nucleation</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>p–i interface</topic><topic>Silicon</topic><topic>Silicon oxide</topic><topic>Silicon oxides</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugnon, Grégory</creatorcontrib><creatorcontrib>Parascandolo, Gaetano</creatorcontrib><creatorcontrib>Hänni, Simon</creatorcontrib><creatorcontrib>Stuckelberger, Michael</creatorcontrib><creatorcontrib>Charrière, Mathieu</creatorcontrib><creatorcontrib>Despeisse, Matthieu</creatorcontrib><creatorcontrib>Meillaud, Fanny</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugnon, Grégory</au><au>Parascandolo, Gaetano</au><au>Hänni, Simon</au><au>Stuckelberger, Michael</au><au>Charrière, Mathieu</au><au>Despeisse, Matthieu</au><au>Meillaud, Fanny</au><au>Ballif, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-01</date><risdate>2014</risdate><volume>120</volume><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The use of intrinsic silicon oxide as a buffer layer at the p–i interface of thin-film silicon solar cells is shown to provide significant advantages. For microcrystalline silicon solar cells, when associated with highly crystalline i-layers deposited at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with substrates of increased roughness. For cells with an improved i-layer material quality, there is mainly a gain in short-circuit current density. An improvement in carrier collection in the blue region of the spectrum is systematically observed on all the cells. The presence of a silicon oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an efficient barrier to boron cross-contamination, eliminating the need for additional processing steps (e.g. water vapor flush), while providing a wide bandgap material at the interface. The implementation of silicon oxide buffer layers for both types of cells thus provides a decisive improvement, as it allows extremely fast deposition of the full p–i–n stack of layers of the cell in a single-chamber configuration while providing a high-quality substrate-resilient p–i interface. [Display omitted] •We implemented SiOx buffers at the p/i interface of thin film silicon solar cells.•µc-Si:H solar cells show superior performances leading to record cells.•Enhanced anti-reflective effect and nucleation of i-(µc-Si:H) layer are observed.•a-Si:H solar cells with SiOx buffer have better stabilized efficiencies.•Effective way to reduce boron cross-contamination in single chamber process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2013.08.034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2014-01, Vol.120, p.143-150
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1642223822
source ScienceDirect Freedom Collection
subjects Amorphous silicon
Applied sciences
Boron cross-contamination
Buffer layers
Current density
Deposition
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Gain
Microcrystalline silicon nucleation
Natural energy
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
p–i interface
Silicon
Silicon oxide
Silicon oxides
Solar cell
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
title Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20oxide%20buffer%20layer%20at%20the%20p%E2%80%93i%20interface%20in%20amorphous%20and%20microcrystalline%20silicon%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Bugnon,%20Gr%C3%A9gory&rft.date=2014-01&rft.volume=120&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2013.08.034&rft_dat=%3Cproquest_cross%3E1642223822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-8b92800352c371f08995e77f860515cbec285c8328f0433aca51dfb271543c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1520380828&rft_id=info:pmid/&rfr_iscdi=true