Loading…

Experimental two-phase flow measurement using ultra fast limited-angle-type electron beam X-ray computed tomography

An experimental evaluation of a novel limited-angle-type ultra fast electron beam X-ray computed tomography approach for the visualization and measurement of a gas–liquid two-phase flow is reported here. With this method, a simple linear electron beam scan is used to produce instantaneous radiograph...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2009-09, Vol.47 (3), p.369-378
Main Authors: Bieberle, M., Fischer, F., Schleicher, E., Koch, D., Menz, H.-J., Mayer, H.-G., Hampel, U.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental evaluation of a novel limited-angle-type ultra fast electron beam X-ray computed tomography approach for the visualization and measurement of a gas–liquid two-phase flow is reported here. With this method, a simple linear electron beam scan is used to produce instantaneous radiographic views of a two-phase flow in a pipe segment of a flow loop. Electron beam scanning can be performed very rapidly, thus a frame rate of 5 kHz is achieved. Radiographic projections are recorded by a very fast detector arc made of zink–cadmium–telluride elements. This detector records the X-ray radiation passing through the object with a sampling rate of 1 MHz. The reconstruction of slice images from the recorded detector data is a limited-angle problem since in our scanning geometry the object’s Radon space is only incompletely sampled. It was investigated here, whether this technology is able to produce accurate gas fraction data from bubbly two-phase flow. Experiments were performed both on a Perspex phantom with known geometry and an experimental flow loop operated under vacuum conditions in an electron beam processing box.
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-009-0617-6