Loading…

The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments

Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2014, Vol.21 (1), p.495-506
Main Authors: Pantoja, M. L., Jones, H., Garelick, H., Mohamedbakr, H. G., Burkitbayev, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3
cites cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3
container_end_page 506
container_issue 1
container_start_page 495
container_title Environmental science and pollution research international
container_volume 21
creator Pantoja, M. L.
Jones, H.
Garelick, H.
Mohamedbakr, H. G.
Burkitbayev, M.
description Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L −1 ) for an initial concentration of 1,000 μg L −1 . Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.
doi_str_mv 10.1007/s11356-013-1891-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642229661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494318995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhkmjsde2P6AbQ-KmLqgwMDC4M9V-JE3c1DXhDodemgGuMGPbfy_NrY0xMa4g4Tkv55wHoWNGTxml6mNljPeSUMYJGzQjag-tmGSCKKH1K7SiWgjCuBD76G2td5R2VHfqDdrv-EBV36sV2txsABeI-aedcPbYlgrJzoB9yRHft1vBSw3pFoeSE4nZBR_AYRfsnGNo4MkXcg4fPuFQ87yBErFNDo95WmLC8LCFEiKkuR6i195OFY6ezwP0_fzrzdkluf52cXX2-ZqMQvUz0YILLSjXVkhqrR2BgYN-bQX0zqt-6NZKr732o-CDBOsH7oR0lnthqbeeH6CTXe625B8L1NnEUEeYJpsgL9UwKbqu01Ky_6OtE94Wq_uGvv8LvctLSW2QRinOqdKSN4rtqLHkWgt4s23T2_JoGDVPxszOmGnGzJMxo1rNu-fkZR3BvVT8VtSAbgfU9pRuofzx9T9TfwFV1KEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473307963</pqid></control><display><type>article</type><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</creator><creatorcontrib>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</creatorcontrib><description>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L −1 ) for an initial concentration of 1,000 μg L −1 . Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-013-1891-7</identifier><identifier>PMID: 23807557</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorbents ; Adsorption ; Affinity ; Aquatic Pollution ; Arsenates ; Arsenates - analysis ; Arsenates - chemistry ; Arsenic ; Arsenic content ; Arsenic removal ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioremediation ; Competition ; Diatomaceous earth ; Diatomaceous Earth - chemistry ; Drinking water ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Experiments ; Hydroxides - chemistry ; Ions ; Iron ; Iron - chemistry ; Isotherms ; Laboratories ; pH effects ; Phosphates ; Phosphates - chemistry ; Research Article ; Studies ; Toxicity ; Waste Disposal, Fluid - methods ; Waste Water Technology ; Water Management ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water pollution ; Water Pollution Control ; Water Purification - methods</subject><ispartof>Environmental science and pollution research international, 2014, Vol.21 (1), p.495-506</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</citedby><cites>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1473307963/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1473307963?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23807557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pantoja, M. L.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>Garelick, H.</creatorcontrib><creatorcontrib>Mohamedbakr, H. G.</creatorcontrib><creatorcontrib>Burkitbayev, M.</creatorcontrib><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L −1 ) for an initial concentration of 1,000 μg L −1 . Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Affinity</subject><subject>Aquatic Pollution</subject><subject>Arsenates</subject><subject>Arsenates - analysis</subject><subject>Arsenates - chemistry</subject><subject>Arsenic</subject><subject>Arsenic content</subject><subject>Arsenic removal</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioremediation</subject><subject>Competition</subject><subject>Diatomaceous earth</subject><subject>Diatomaceous Earth - chemistry</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Experiments</subject><subject>Hydroxides - chemistry</subject><subject>Ions</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Isotherms</subject><subject>Laboratories</subject><subject>pH effects</subject><subject>Phosphates</subject><subject>Phosphates - chemistry</subject><subject>Research Article</subject><subject>Studies</subject><subject>Toxicity</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water pollution</subject><subject>Water Pollution Control</subject><subject>Water Purification - methods</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkU1vFSEUhkmjsde2P6AbQ-KmLqgwMDC4M9V-JE3c1DXhDodemgGuMGPbfy_NrY0xMa4g4Tkv55wHoWNGTxml6mNljPeSUMYJGzQjag-tmGSCKKH1K7SiWgjCuBD76G2td5R2VHfqDdrv-EBV36sV2txsABeI-aedcPbYlgrJzoB9yRHft1vBSw3pFoeSE4nZBR_AYRfsnGNo4MkXcg4fPuFQ87yBErFNDo95WmLC8LCFEiKkuR6i195OFY6ezwP0_fzrzdkluf52cXX2-ZqMQvUz0YILLSjXVkhqrR2BgYN-bQX0zqt-6NZKr732o-CDBOsH7oR0lnthqbeeH6CTXe625B8L1NnEUEeYJpsgL9UwKbqu01Ky_6OtE94Wq_uGvv8LvctLSW2QRinOqdKSN4rtqLHkWgt4s23T2_JoGDVPxszOmGnGzJMxo1rNu-fkZR3BvVT8VtSAbgfU9pRuofzx9T9TfwFV1KEA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Pantoja, M. L.</creator><creator>Jones, H.</creator><creator>Garelick, H.</creator><creator>Mohamedbakr, H. G.</creator><creator>Burkitbayev, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><author>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Affinity</topic><topic>Aquatic Pollution</topic><topic>Arsenates</topic><topic>Arsenates - analysis</topic><topic>Arsenates - chemistry</topic><topic>Arsenic</topic><topic>Arsenic content</topic><topic>Arsenic removal</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioremediation</topic><topic>Competition</topic><topic>Diatomaceous earth</topic><topic>Diatomaceous Earth - chemistry</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Experiments</topic><topic>Hydroxides - chemistry</topic><topic>Ions</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Isotherms</topic><topic>Laboratories</topic><topic>pH effects</topic><topic>Phosphates</topic><topic>Phosphates - chemistry</topic><topic>Research Article</topic><topic>Studies</topic><topic>Toxicity</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water pollution</topic><topic>Water Pollution Control</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantoja, M. L.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>Garelick, H.</creatorcontrib><creatorcontrib>Mohamedbakr, H. G.</creatorcontrib><creatorcontrib>Burkitbayev, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantoja, M. L.</au><au>Jones, H.</au><au>Garelick, H.</au><au>Mohamedbakr, H. G.</au><au>Burkitbayev, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L −1 ) for an initial concentration of 1,000 μg L −1 . Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23807557</pmid><doi>10.1007/s11356-013-1891-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2014, Vol.21 (1), p.495-506
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_1642229661
source ABI/INFORM global; Springer Nature
subjects Adsorbents
Adsorption
Affinity
Aquatic Pollution
Arsenates
Arsenates - analysis
Arsenates - chemistry
Arsenic
Arsenic content
Arsenic removal
Atmospheric Protection/Air Quality Control/Air Pollution
Bioremediation
Competition
Diatomaceous earth
Diatomaceous Earth - chemistry
Drinking water
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Experiments
Hydroxides - chemistry
Ions
Iron
Iron - chemistry
Isotherms
Laboratories
pH effects
Phosphates
Phosphates - chemistry
Research Article
Studies
Toxicity
Waste Disposal, Fluid - methods
Waste Water Technology
Water Management
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water pollution
Water Pollution Control
Water Purification - methods
title The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20removal%20of%20arsenate%20from%20water%20using%20iron-modified%20diatomite%20(D-Fe):%20isotherm%20and%20column%20experiments&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Pantoja,%20M.%20L.&rft.date=2014&rft.volume=21&rft.issue=1&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-013-1891-7&rft_dat=%3Cproquest_cross%3E1494318995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1473307963&rft_id=info:pmid/23807557&rfr_iscdi=true