Loading…
The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments
Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive...
Saved in:
Published in: | Environmental science and pollution research international 2014, Vol.21 (1), p.495-506 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3 |
container_end_page | 506 |
container_issue | 1 |
container_start_page | 495 |
container_title | Environmental science and pollution research international |
container_volume | 21 |
creator | Pantoja, M. L. Jones, H. Garelick, H. Mohamedbakr, H. G. Burkitbayev, M. |
description | Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L
−1
) for an initial concentration of 1,000 μg L
−1
. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation. |
doi_str_mv | 10.1007/s11356-013-1891-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642229661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494318995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhkmjsde2P6AbQ-KmLqgwMDC4M9V-JE3c1DXhDodemgGuMGPbfy_NrY0xMa4g4Tkv55wHoWNGTxml6mNljPeSUMYJGzQjag-tmGSCKKH1K7SiWgjCuBD76G2td5R2VHfqDdrv-EBV36sV2txsABeI-aedcPbYlgrJzoB9yRHft1vBSw3pFoeSE4nZBR_AYRfsnGNo4MkXcg4fPuFQ87yBErFNDo95WmLC8LCFEiKkuR6i195OFY6ezwP0_fzrzdkluf52cXX2-ZqMQvUz0YILLSjXVkhqrR2BgYN-bQX0zqt-6NZKr732o-CDBOsH7oR0lnthqbeeH6CTXe625B8L1NnEUEeYJpsgL9UwKbqu01Ky_6OtE94Wq_uGvv8LvctLSW2QRinOqdKSN4rtqLHkWgt4s23T2_JoGDVPxszOmGnGzJMxo1rNu-fkZR3BvVT8VtSAbgfU9pRuofzx9T9TfwFV1KEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473307963</pqid></control><display><type>article</type><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</creator><creatorcontrib>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</creatorcontrib><description>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L
−1
) for an initial concentration of 1,000 μg L
−1
. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-013-1891-7</identifier><identifier>PMID: 23807557</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorbents ; Adsorption ; Affinity ; Aquatic Pollution ; Arsenates ; Arsenates - analysis ; Arsenates - chemistry ; Arsenic ; Arsenic content ; Arsenic removal ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioremediation ; Competition ; Diatomaceous earth ; Diatomaceous Earth - chemistry ; Drinking water ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Experiments ; Hydroxides - chemistry ; Ions ; Iron ; Iron - chemistry ; Isotherms ; Laboratories ; pH effects ; Phosphates ; Phosphates - chemistry ; Research Article ; Studies ; Toxicity ; Waste Disposal, Fluid - methods ; Waste Water Technology ; Water Management ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water pollution ; Water Pollution Control ; Water Purification - methods</subject><ispartof>Environmental science and pollution research international, 2014, Vol.21 (1), p.495-506</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</citedby><cites>FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1473307963/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1473307963?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23807557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pantoja, M. L.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>Garelick, H.</creatorcontrib><creatorcontrib>Mohamedbakr, H. G.</creatorcontrib><creatorcontrib>Burkitbayev, M.</creatorcontrib><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L
−1
) for an initial concentration of 1,000 μg L
−1
. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Affinity</subject><subject>Aquatic Pollution</subject><subject>Arsenates</subject><subject>Arsenates - analysis</subject><subject>Arsenates - chemistry</subject><subject>Arsenic</subject><subject>Arsenic content</subject><subject>Arsenic removal</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioremediation</subject><subject>Competition</subject><subject>Diatomaceous earth</subject><subject>Diatomaceous Earth - chemistry</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Experiments</subject><subject>Hydroxides - chemistry</subject><subject>Ions</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Isotherms</subject><subject>Laboratories</subject><subject>pH effects</subject><subject>Phosphates</subject><subject>Phosphates - chemistry</subject><subject>Research Article</subject><subject>Studies</subject><subject>Toxicity</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water pollution</subject><subject>Water Pollution Control</subject><subject>Water Purification - methods</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkU1vFSEUhkmjsde2P6AbQ-KmLqgwMDC4M9V-JE3c1DXhDodemgGuMGPbfy_NrY0xMa4g4Tkv55wHoWNGTxml6mNljPeSUMYJGzQjag-tmGSCKKH1K7SiWgjCuBD76G2td5R2VHfqDdrv-EBV36sV2txsABeI-aedcPbYlgrJzoB9yRHft1vBSw3pFoeSE4nZBR_AYRfsnGNo4MkXcg4fPuFQ87yBErFNDo95WmLC8LCFEiKkuR6i195OFY6ezwP0_fzrzdkluf52cXX2-ZqMQvUz0YILLSjXVkhqrR2BgYN-bQX0zqt-6NZKr732o-CDBOsH7oR0lnthqbeeH6CTXe625B8L1NnEUEeYJpsgL9UwKbqu01Ky_6OtE94Wq_uGvv8LvctLSW2QRinOqdKSN4rtqLHkWgt4s23T2_JoGDVPxszOmGnGzJMxo1rNu-fkZR3BvVT8VtSAbgfU9pRuofzx9T9TfwFV1KEA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Pantoja, M. L.</creator><creator>Jones, H.</creator><creator>Garelick, H.</creator><creator>Mohamedbakr, H. G.</creator><creator>Burkitbayev, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</title><author>Pantoja, M. L. ; Jones, H. ; Garelick, H. ; Mohamedbakr, H. G. ; Burkitbayev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Affinity</topic><topic>Aquatic Pollution</topic><topic>Arsenates</topic><topic>Arsenates - analysis</topic><topic>Arsenates - chemistry</topic><topic>Arsenic</topic><topic>Arsenic content</topic><topic>Arsenic removal</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioremediation</topic><topic>Competition</topic><topic>Diatomaceous earth</topic><topic>Diatomaceous Earth - chemistry</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Experiments</topic><topic>Hydroxides - chemistry</topic><topic>Ions</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Isotherms</topic><topic>Laboratories</topic><topic>pH effects</topic><topic>Phosphates</topic><topic>Phosphates - chemistry</topic><topic>Research Article</topic><topic>Studies</topic><topic>Toxicity</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water pollution</topic><topic>Water Pollution Control</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantoja, M. L.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>Garelick, H.</creatorcontrib><creatorcontrib>Mohamedbakr, H. G.</creatorcontrib><creatorcontrib>Burkitbayev, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantoja, M. L.</au><au>Jones, H.</au><au>Garelick, H.</au><au>Mohamedbakr, H. G.</au><au>Burkitbayev, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L
−1
) for an initial concentration of 1,000 μg L
−1
. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23807557</pmid><doi>10.1007/s11356-013-1891-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2014, Vol.21 (1), p.495-506 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642229661 |
source | ABI/INFORM global; Springer Nature |
subjects | Adsorbents Adsorption Affinity Aquatic Pollution Arsenates Arsenates - analysis Arsenates - chemistry Arsenic Arsenic content Arsenic removal Atmospheric Protection/Air Quality Control/Air Pollution Bioremediation Competition Diatomaceous earth Diatomaceous Earth - chemistry Drinking water Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Experiments Hydroxides - chemistry Ions Iron Iron - chemistry Isotherms Laboratories pH effects Phosphates Phosphates - chemistry Research Article Studies Toxicity Waste Disposal, Fluid - methods Waste Water Technology Water Management Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water pollution Water Pollution Control Water Purification - methods |
title | The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20removal%20of%20arsenate%20from%20water%20using%20iron-modified%20diatomite%20(D-Fe):%20isotherm%20and%20column%20experiments&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Pantoja,%20M.%20L.&rft.date=2014&rft.volume=21&rft.issue=1&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-013-1891-7&rft_dat=%3Cproquest_cross%3E1494318995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-943494039a460aaace1ede5ba4e5df7582b79bf9fc4386eaf83d46da3f4a0faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1473307963&rft_id=info:pmid/23807557&rfr_iscdi=true |