Loading…

Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring

Reaeration coefficient (k ₂) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in th...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modeling & assessment 2013-02, Vol.18 (1), p.85-94
Main Authors: Omole, D. O, Longe, E. O, Musa, A. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203
cites cdi_FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203
container_end_page 94
container_issue 1
container_start_page 85
container_title Environmental modeling & assessment
container_volume 18
creator Omole, D. O
Longe, E. O
Musa, A. G
description Reaeration coefficient (k ₂) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k ₂) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.
doi_str_mv 10.1007/s10666-012-9328-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642229811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713977708</galeid><sourcerecordid>A713977708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203</originalsourceid><addsrcrecordid>eNqFkUuLHCEUhYuQgUw68wOyipBNNjXxqqXlsmnygg4h82CWYtvXjkO1dtRazL-PTWURskgQVOQ7cs85Xfca6DVQqt4XoFLKngLrNWdjT591lzAo3jMt1fN2F4z2jDL5ontZyiOlDafDZXe_Pp1ysu4HqYncoMVsa0iRbBJ6H1zAWMnXtMcpxAMJkWyTsxO5nbO3DsmDrZjJ99lOoT41LoaaciNfdRfeTgWvfp-r7u7jh7vN53777dOXzXrbOyGG2gthvd_tPQgQ6PkAo9PWUun8yDXQnXc7zyRHpUFzdIMVexBOg9eCcUb5qnu3fNss_JyxVHMMxeE02YhpLgakYIzpEeD_qNBMshafbOjbv9DHNOfYfBjgIHjLt-2r7nqhDnZCE6JPNVvX1h6PwaWIPrT3tQKulVJ0bAJYBC6nUjJ6c8rhaPOTAWrOHZqlQ9OGMOcOzdkgWzTldI4V8x-j_EP0ZhF5m4w95FDM_W2zJiiFYdBC8V9-e6YW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314393214</pqid></control><display><type>article</type><title>Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Omole, D. O ; Longe, E. O ; Musa, A. G</creator><creatorcontrib>Omole, D. O ; Longe, E. O ; Musa, A. G</creatorcontrib><description>Reaeration coefficient (k ₂) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k ₂) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-012-9328-0</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Analysis ; Applications of Mathematics ; Aquatic resources ; Assessments ; Bayesian analysis ; Biochemical oxygen demand ; Coefficients ; Creeks &amp; streams ; Dissolution ; Dissolved oxygen ; Earth and Environmental Science ; Efficiency ; Environment ; Environmental conditions ; Environmental monitoring ; Hypotheses ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; monitoring ; Operations Research/Decision Theory ; Quality control ; Rivers ; seasons ; Standard deviation ; Statistics ; Studies ; Surface water ; Water monitoring ; Water pollution ; Water quality ; Water quality management</subject><ispartof>Environmental modeling &amp; assessment, 2013-02, Vol.18 (1), p.85-94</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203</citedby><cites>FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1314393214/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1314393214?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Omole, D. O</creatorcontrib><creatorcontrib>Longe, E. O</creatorcontrib><creatorcontrib>Musa, A. G</creatorcontrib><title>Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring</title><title>Environmental modeling &amp; assessment</title><addtitle>Environ Model Assess</addtitle><description>Reaeration coefficient (k ₂) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k ₂) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Aquatic resources</subject><subject>Assessments</subject><subject>Bayesian analysis</subject><subject>Biochemical oxygen demand</subject><subject>Coefficients</subject><subject>Creeks &amp; streams</subject><subject>Dissolution</subject><subject>Dissolved oxygen</subject><subject>Earth and Environmental Science</subject><subject>Efficiency</subject><subject>Environment</subject><subject>Environmental conditions</subject><subject>Environmental monitoring</subject><subject>Hypotheses</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>monitoring</subject><subject>Operations Research/Decision Theory</subject><subject>Quality control</subject><subject>Rivers</subject><subject>seasons</subject><subject>Standard deviation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Surface water</subject><subject>Water monitoring</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water quality management</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkUuLHCEUhYuQgUw68wOyipBNNjXxqqXlsmnygg4h82CWYtvXjkO1dtRazL-PTWURskgQVOQ7cs85Xfca6DVQqt4XoFLKngLrNWdjT591lzAo3jMt1fN2F4z2jDL5ontZyiOlDafDZXe_Pp1ysu4HqYncoMVsa0iRbBJ6H1zAWMnXtMcpxAMJkWyTsxO5nbO3DsmDrZjJ99lOoT41LoaaciNfdRfeTgWvfp-r7u7jh7vN53777dOXzXrbOyGG2gthvd_tPQgQ6PkAo9PWUun8yDXQnXc7zyRHpUFzdIMVexBOg9eCcUb5qnu3fNss_JyxVHMMxeE02YhpLgakYIzpEeD_qNBMshafbOjbv9DHNOfYfBjgIHjLt-2r7nqhDnZCE6JPNVvX1h6PwaWIPrT3tQKulVJ0bAJYBC6nUjJ6c8rhaPOTAWrOHZqlQ9OGMOcOzdkgWzTldI4V8x-j_EP0ZhF5m4w95FDM_W2zJiiFYdBC8V9-e6YW</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Omole, D. O</creator><creator>Longe, E. O</creator><creator>Musa, A. G</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SU</scope></search><sort><creationdate>20130201</creationdate><title>Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring</title><author>Omole, D. O ; Longe, E. O ; Musa, A. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Aquatic resources</topic><topic>Assessments</topic><topic>Bayesian analysis</topic><topic>Biochemical oxygen demand</topic><topic>Coefficients</topic><topic>Creeks &amp; streams</topic><topic>Dissolution</topic><topic>Dissolved oxygen</topic><topic>Earth and Environmental Science</topic><topic>Efficiency</topic><topic>Environment</topic><topic>Environmental conditions</topic><topic>Environmental monitoring</topic><topic>Hypotheses</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>monitoring</topic><topic>Operations Research/Decision Theory</topic><topic>Quality control</topic><topic>Rivers</topic><topic>seasons</topic><topic>Standard deviation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Surface water</topic><topic>Water monitoring</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water quality management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omole, D. O</creatorcontrib><creatorcontrib>Longe, E. O</creatorcontrib><creatorcontrib>Musa, A. G</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Environmental modeling &amp; assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omole, D. O</au><au>Longe, E. O</au><au>Musa, A. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring</atitle><jtitle>Environmental modeling &amp; assessment</jtitle><stitle>Environ Model Assess</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>18</volume><issue>1</issue><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>Reaeration coefficient (k ₂) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k ₂) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10666-012-9328-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-2026
ispartof Environmental modeling & assessment, 2013-02, Vol.18 (1), p.85-94
issn 1420-2026
1573-2967
language eng
recordid cdi_proquest_miscellaneous_1642229811
source ABI/INFORM global; Springer Nature
subjects Analysis
Applications of Mathematics
Aquatic resources
Assessments
Bayesian analysis
Biochemical oxygen demand
Coefficients
Creeks & streams
Dissolution
Dissolved oxygen
Earth and Environmental Science
Efficiency
Environment
Environmental conditions
Environmental monitoring
Hypotheses
Math. Appl. in Environmental Science
Mathematical Modeling and Industrial Mathematics
Mathematical models
monitoring
Operations Research/Decision Theory
Quality control
Rivers
seasons
Standard deviation
Statistics
Studies
Surface water
Water monitoring
Water pollution
Water quality
Water quality management
title Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approach%20to%20Reaeration%20Coefficient%20Modeling%20in%20Local%20Surface%20Water%20Quality%20Monitoring&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Omole,%20D.%20O&rft.date=2013-02-01&rft.volume=18&rft.issue=1&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-012-9328-0&rft_dat=%3Cgale_proqu%3EA713977708%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-44affbdf1414ef3518c9aa06cf83910bfcbf263e79193ec5a4d14c91f9423203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1314393214&rft_id=info:pmid/&rft_galeid=A713977708&rfr_iscdi=true