Loading…

Nanomechanical mapping of graphene layers and interfaces in suspended graphene nanostructures grown via carbon diffusion

Graphene's remarkable mechanical, electronic and thermal properties are strongly determined by both the mechanism of its growth and its interaction with the underlying substrate. Evidently, in order to explore the fundamentals of these mechanisms, efficient nanoscale methods that enable observa...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2014-01, Vol.550, p.472-479
Main Authors: Robinson, B.J., Rabot, C., Mazzocco, R., Delamoreanu, A., Zenasni, A., Kolosov, O.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene's remarkable mechanical, electronic and thermal properties are strongly determined by both the mechanism of its growth and its interaction with the underlying substrate. Evidently, in order to explore the fundamentals of these mechanisms, efficient nanoscale methods that enable observation of features hidden underneath the immediate surface are needed. In this paper we use nanomechanical mapping via ultrasonic force microscopy that employs MHz frequency range ultrasonic vibrations and allows the observation of surface composition and subsurface interfaces with nanoscale resolution, to elucidate the morphology of few layer graphene (FLG) films produced via a recently reported method of carbon diffusion growth (CDG) on platinum-metal based substrate. CDG is known to result in FLG suspended over large areas, which could be of high importance for graphene transfer and applications where a standalone graphene film is required. This study directly reveals the detailed mechanism of CDG three-dimensional growth and FLG film detachment, directly linking the level of graphene decoupling with variations of the substrate temperature during the annealing phase of growth. We also show that graphene initially and preferentially decouples at the substrate grain boundaries, likely due to its negative expansion coefficient at cooling, forming characteristic “nano-domes” at the intersections of the grain boundaries. Furthermore, quantitative nanomechanical mapping of flexural stiffness of suspended FLG “nano-domes” using kHz frequency range force modulation microscopy uncovers the progression of “nano-dome” stiffness from single to bi-modal distribution as CDG growth progresses, suggesting growth instability at advanced CDG stages. •Exploring growth and film-substrate decoupling in carbon diffusion grown graphene•Nanomechanical mapping of few layer graphene and graphene–substrate interfaces•Quantitative stiffness mapping of suspended graphene in “nano-dome” delaminations•Ultrasonic force and force modulation microscopy nanoscale imaging of thin films
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2013.10.093