Loading…

Low density thermoplastic nanofoams nucleated by nanoparticles

We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2013-05, Vol.54 (11), p.2785-2795
Main Authors: Costeux, Stéphane, Zhu, Lingbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3
cites cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3
container_end_page 2795
container_issue 11
container_start_page 2785
container_title Polymer (Guilford)
container_volume 54
creator Costeux, Stéphane
Zhu, Lingbo
description We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude. This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3. Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature. [Display omitted]
doi_str_mv 10.1016/j.polymer.2013.03.052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642235990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386113002711</els_id><sourcerecordid>1642235990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpoJtNfkKJL4FevB3JlixfGkpom8BCD0nOYlYeNVpsy5W8Cfvvo-0uuRYGBobvvTc8xj5zWHHg6ut2NYV-P1BcCeDVCvJI8YEtuG6qUoiWf2QLgEqUlVb8EztPaQsAQop6wb6tw2vR0Zj8vC_mZ4pDmHpMs7fFiGNwAYdUjDvbE87UFZv9v_OEMRM9pQt25rBPdHnaS_b088fj7V25_v3r_vb7urS1EnOpNSEHVBY6kqglNtBY0huFonWNAkskOQlXa6lRo1Ot3tTaygbBdY2y1ZJ9OfpOMfzdUZrN4JOlvseRwi4ZrmohKtm2kFF5RG0MKUVyZop-wLg3HMyhL7M1p77MoS8DeaTIuutTBCaLvYs4Wp_exaKpKimEzNzVkXMYDP6JmXl6yEYSgEM2OhA3R4JyIy8-5yTrabTU-Uh2Nl3w__nlDXaQjbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642235990</pqid></control><display><type>article</type><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Costeux, Stéphane ; Zhu, Lingbo</creator><creatorcontrib>Costeux, Stéphane ; Zhu, Lingbo</creatorcontrib><description>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude. This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3. Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature. [Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2013.03.052</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additives ; annealing ; Applied sciences ; Carbon dioxide ; Cellular ; CO2 ; composite polymers ; Density ; Exact sciences and technology ; Foaming ; foams ; Forms of application and semi-finished materials ; Nanocellular ; Nanofoam ; nanoparticles ; Nanostructure ; Polymer industry, paints, wood ; Polymethyl methacrylates ; Porosity ; silica ; Technology of polymers ; temperature ; Thermoplastic resins ; thermoplastics</subject><ispartof>Polymer (Guilford), 2013-05, Vol.54 (11), p.2785-2795</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</citedby><cites>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27335225$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Zhu, Lingbo</creatorcontrib><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><title>Polymer (Guilford)</title><description>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude. This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3. Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature. [Display omitted]</description><subject>Additives</subject><subject>annealing</subject><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Cellular</subject><subject>CO2</subject><subject>composite polymers</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Foaming</subject><subject>foams</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanocellular</subject><subject>Nanofoam</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymethyl methacrylates</subject><subject>Porosity</subject><subject>silica</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Thermoplastic resins</subject><subject>thermoplastics</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpoJtNfkKJL4FevB3JlixfGkpom8BCD0nOYlYeNVpsy5W8Cfvvo-0uuRYGBobvvTc8xj5zWHHg6ut2NYV-P1BcCeDVCvJI8YEtuG6qUoiWf2QLgEqUlVb8EztPaQsAQop6wb6tw2vR0Zj8vC_mZ4pDmHpMs7fFiGNwAYdUjDvbE87UFZv9v_OEMRM9pQt25rBPdHnaS_b088fj7V25_v3r_vb7urS1EnOpNSEHVBY6kqglNtBY0huFonWNAkskOQlXa6lRo1Ot3tTaygbBdY2y1ZJ9OfpOMfzdUZrN4JOlvseRwi4ZrmohKtm2kFF5RG0MKUVyZop-wLg3HMyhL7M1p77MoS8DeaTIuutTBCaLvYs4Wp_exaKpKimEzNzVkXMYDP6JmXl6yEYSgEM2OhA3R4JyIy8-5yTrabTU-Uh2Nl3w__nlDXaQjbE</recordid><startdate>20130509</startdate><enddate>20130509</enddate><creator>Costeux, Stéphane</creator><creator>Zhu, Lingbo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130509</creationdate><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><author>Costeux, Stéphane ; Zhu, Lingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Additives</topic><topic>annealing</topic><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Cellular</topic><topic>CO2</topic><topic>composite polymers</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Foaming</topic><topic>foams</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanocellular</topic><topic>Nanofoam</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymethyl methacrylates</topic><topic>Porosity</topic><topic>silica</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Thermoplastic resins</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Zhu, Lingbo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costeux, Stéphane</au><au>Zhu, Lingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low density thermoplastic nanofoams nucleated by nanoparticles</atitle><jtitle>Polymer (Guilford)</jtitle><date>2013-05-09</date><risdate>2013</risdate><volume>54</volume><issue>11</issue><spage>2785</spage><epage>2795</epage><pages>2785-2795</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude. This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3. Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2013.03.052</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2013-05, Vol.54 (11), p.2785-2795
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_1642235990
source ScienceDirect Freedom Collection
subjects Additives
annealing
Applied sciences
Carbon dioxide
Cellular
CO2
composite polymers
Density
Exact sciences and technology
Foaming
foams
Forms of application and semi-finished materials
Nanocellular
Nanofoam
nanoparticles
Nanostructure
Polymer industry, paints, wood
Polymethyl methacrylates
Porosity
silica
Technology of polymers
temperature
Thermoplastic resins
thermoplastics
title Low density thermoplastic nanofoams nucleated by nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20density%20thermoplastic%20nanofoams%20nucleated%20by%20nanoparticles&rft.jtitle=Polymer%20(Guilford)&rft.au=Costeux,%20St%C3%A9phane&rft.date=2013-05-09&rft.volume=54&rft.issue=11&rft.spage=2785&rft.epage=2795&rft.pages=2785-2795&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2013.03.052&rft_dat=%3Cproquest_cross%3E1642235990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642235990&rft_id=info:pmid/&rfr_iscdi=true