Loading…
Low density thermoplastic nanofoams nucleated by nanoparticles
We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and...
Saved in:
Published in: | Polymer (Guilford) 2013-05, Vol.54 (11), p.2785-2795 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3 |
container_end_page | 2795 |
container_issue | 11 |
container_start_page | 2785 |
container_title | Polymer (Guilford) |
container_volume | 54 |
creator | Costeux, Stéphane Zhu, Lingbo |
description | We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude.
This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3.
Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature.
[Display omitted] |
doi_str_mv | 10.1016/j.polymer.2013.03.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642235990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386113002711</els_id><sourcerecordid>1642235990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpoJtNfkKJL4FevB3JlixfGkpom8BCD0nOYlYeNVpsy5W8Cfvvo-0uuRYGBobvvTc8xj5zWHHg6ut2NYV-P1BcCeDVCvJI8YEtuG6qUoiWf2QLgEqUlVb8EztPaQsAQop6wb6tw2vR0Zj8vC_mZ4pDmHpMs7fFiGNwAYdUjDvbE87UFZv9v_OEMRM9pQt25rBPdHnaS_b088fj7V25_v3r_vb7urS1EnOpNSEHVBY6kqglNtBY0huFonWNAkskOQlXa6lRo1Ot3tTaygbBdY2y1ZJ9OfpOMfzdUZrN4JOlvseRwi4ZrmohKtm2kFF5RG0MKUVyZop-wLg3HMyhL7M1p77MoS8DeaTIuutTBCaLvYs4Wp_exaKpKimEzNzVkXMYDP6JmXl6yEYSgEM2OhA3R4JyIy8-5yTrabTU-Uh2Nl3w__nlDXaQjbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642235990</pqid></control><display><type>article</type><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Costeux, Stéphane ; Zhu, Lingbo</creator><creatorcontrib>Costeux, Stéphane ; Zhu, Lingbo</creatorcontrib><description>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude.
This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3.
Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature.
[Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2013.03.052</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additives ; annealing ; Applied sciences ; Carbon dioxide ; Cellular ; CO2 ; composite polymers ; Density ; Exact sciences and technology ; Foaming ; foams ; Forms of application and semi-finished materials ; Nanocellular ; Nanofoam ; nanoparticles ; Nanostructure ; Polymer industry, paints, wood ; Polymethyl methacrylates ; Porosity ; silica ; Technology of polymers ; temperature ; Thermoplastic resins ; thermoplastics</subject><ispartof>Polymer (Guilford), 2013-05, Vol.54 (11), p.2785-2795</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</citedby><cites>FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27335225$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Zhu, Lingbo</creatorcontrib><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><title>Polymer (Guilford)</title><description>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude.
This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3.
Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature.
[Display omitted]</description><subject>Additives</subject><subject>annealing</subject><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Cellular</subject><subject>CO2</subject><subject>composite polymers</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Foaming</subject><subject>foams</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanocellular</subject><subject>Nanofoam</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymethyl methacrylates</subject><subject>Porosity</subject><subject>silica</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Thermoplastic resins</subject><subject>thermoplastics</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpoJtNfkKJL4FevB3JlixfGkpom8BCD0nOYlYeNVpsy5W8Cfvvo-0uuRYGBobvvTc8xj5zWHHg6ut2NYV-P1BcCeDVCvJI8YEtuG6qUoiWf2QLgEqUlVb8EztPaQsAQop6wb6tw2vR0Zj8vC_mZ4pDmHpMs7fFiGNwAYdUjDvbE87UFZv9v_OEMRM9pQt25rBPdHnaS_b088fj7V25_v3r_vb7urS1EnOpNSEHVBY6kqglNtBY0huFonWNAkskOQlXa6lRo1Ot3tTaygbBdY2y1ZJ9OfpOMfzdUZrN4JOlvseRwi4ZrmohKtm2kFF5RG0MKUVyZop-wLg3HMyhL7M1p77MoS8DeaTIuutTBCaLvYs4Wp_exaKpKimEzNzVkXMYDP6JmXl6yEYSgEM2OhA3R4JyIy8-5yTrabTU-Uh2Nl3w__nlDXaQjbE</recordid><startdate>20130509</startdate><enddate>20130509</enddate><creator>Costeux, Stéphane</creator><creator>Zhu, Lingbo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130509</creationdate><title>Low density thermoplastic nanofoams nucleated by nanoparticles</title><author>Costeux, Stéphane ; Zhu, Lingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Additives</topic><topic>annealing</topic><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Cellular</topic><topic>CO2</topic><topic>composite polymers</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Foaming</topic><topic>foams</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanocellular</topic><topic>Nanofoam</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymethyl methacrylates</topic><topic>Porosity</topic><topic>silica</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Thermoplastic resins</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Zhu, Lingbo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costeux, Stéphane</au><au>Zhu, Lingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low density thermoplastic nanofoams nucleated by nanoparticles</atitle><jtitle>Polymer (Guilford)</jtitle><date>2013-05-09</date><risdate>2013</risdate><volume>54</volume><issue>11</issue><spage>2785</spage><epage>2795</epage><pages>2785-2795</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>We report the successful production of thick, homogeneous nanocellular foams with high pore volume by carbon dioxide foaming of thermoplastic polymers. The addition of nanoscale additives, either silica nanoparticles or POSS, was shown to enhance cell nucleation density for polymethymethacrylate and styrene–acrylonitrile copolymers by three orders of magnitude.
This approach is especially effective using acrylic copolymers with improved CO2 affinity such as poly(methyl methacrylate-co-ethyl acrylate) or poly(methyl methacrylate-co-ethyl methacrylate), for which nanoscale additive levels below 0.5 wt% contributed to the production of nanofoams with 100 nm average cell size, relative density of 0.15 (85% porosity) and cell densities exceeding 1016 cells/cm3.
Well-dispersed additives with size of 7 nm or less gave the finest cell morphologies. Designed experiments also showed that foaming at higher pressures (above 30 MPa) and lower temperatures (40 °C and below) increased cell density and reduced cell size, and that porosity could be maximized by adjusting post-foaming annealing temperature.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2013.03.052</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2013-05, Vol.54 (11), p.2785-2795 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642235990 |
source | ScienceDirect Freedom Collection |
subjects | Additives annealing Applied sciences Carbon dioxide Cellular CO2 composite polymers Density Exact sciences and technology Foaming foams Forms of application and semi-finished materials Nanocellular Nanofoam nanoparticles Nanostructure Polymer industry, paints, wood Polymethyl methacrylates Porosity silica Technology of polymers temperature Thermoplastic resins thermoplastics |
title | Low density thermoplastic nanofoams nucleated by nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20density%20thermoplastic%20nanofoams%20nucleated%20by%20nanoparticles&rft.jtitle=Polymer%20(Guilford)&rft.au=Costeux,%20St%C3%A9phane&rft.date=2013-05-09&rft.volume=54&rft.issue=11&rft.spage=2785&rft.epage=2795&rft.pages=2785-2795&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2013.03.052&rft_dat=%3Cproquest_cross%3E1642235990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-88ea10a6c0de5a85a707ce8b6a29f760cee51e2f4858a8af698b48c57a0fd76c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642235990&rft_id=info:pmid/&rfr_iscdi=true |