Loading…

Aerodynamic and functional consequences of wing compliance

A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces t...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2009-05, Vol.46 (5), p.873-882
Main Authors: Mountcastle, Andrew M., Daniel, Thomas L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive wing deformation is an unavoidable feature of flapping flight for many insects due to the inertial loads that accompany rapid stroke reversals—loads that well exceed the mean aerodynamic force. Although wing compliance has been implicated in a few lift-enhancing mechanisms (e.g., favorable camber), the direct aerodynamic consequences of wing deformation remain generally unresolved. In this paper, we present new experimental data on how wing compliance may affect the overall induced flow in the hawkmoth, Manduca sexta . Real moth wings were subjected to robotic actuation in their dominant plane of rotation at a natural wing beat frequency of 25 Hz. We used digital particle image velocimetry at exceptionally high temporal resolution (2,100 fps) to assess the influence of wing compliance on the mean advective flows, relying on a natural variation in wing stiffness to alter the amount of emergent deformation (freshly extracted wings are flexible and exhibit greater compliance than those that are desiccated). We find that flexible wings yield mean advective flows with substantially greater magnitudes and orientations more beneficial to lift than those of stiff wings. Our results confirm that wing compliance plays a critical role in the production of flight forces.
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-008-0607-0