Loading…

Development of a HS-LIF-system for Lagrangian correlation measurement

Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2009-04, Vol.46 (4), p.607-616
Main Authors: Winkler, Anton, Wäsle, Johann, Sattelmayer, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3
cites cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3
container_end_page 616
container_issue 4
container_start_page 607
container_title Experiments in fluids
container_volume 46
creator Winkler, Anton
Wäsle, Johann
Sattelmayer, Thomas
description Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to and upon the frequency proportional to f −2 in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.
doi_str_mv 10.1007/s00348-008-0585-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642237062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512334507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwA9iyILEYzh-JnRGVllaKxADMlutcqlRJXOwEqf-eVEGMMNzdcM_7Dg8htwweGIB6jABCagowTqpTys_IjEnBKWNMnpMZKC6o1Jm8JFcx7gFYmoOekeUzfmHjDy12feKrxCbrN1psVjQeY49tUvmQFHYXbLerbZc4HwI2tq99l7Ro4xDwlLwmF5VtIt783Dn5WC3fF2tavL5sFk8FdULLngrtUiyF5lss7VbJcWcsFegUy8GBFtxlW8cRVC4YcMmyUliRY8pLwKp0Yk7up95D8J8Dxt60dXTYNLZDP0TDMsm5UJDx_9GUcSFkCmpE2YS64GMMWJlDqFsbjoaBOdk1k10z2jUnu-ZUf_dTb6OzTTUKcnX8DXLGda7yfOT4xMXx1e0wmL0fQjdK-qP8G_MdiJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512334507</pqid></control><display><type>article</type><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><source>Springer Nature</source><creator>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</creator><creatorcontrib>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</creatorcontrib><description>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to and upon the frequency proportional to f −2 in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-008-0585-2</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Combustion ; Combustion. Flame ; Computational fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact sciences and technology ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Noise ; Research Article ; Spectra ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent flow ; Wavenumber</subject><ispartof>Experiments in fluids, 2009-04, Vol.46 (4), p.607-616</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</citedby><cites>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21289799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Winkler, Anton</creatorcontrib><creatorcontrib>Wäsle, Johann</creatorcontrib><creatorcontrib>Sattelmayer, Thomas</creatorcontrib><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to and upon the frequency proportional to f −2 in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</description><subject>Applied sciences</subject><subject>Combustion</subject><subject>Combustion. Flame</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Noise</subject><subject>Research Article</subject><subject>Spectra</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Wavenumber</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwA9iyILEYzh-JnRGVllaKxADMlutcqlRJXOwEqf-eVEGMMNzdcM_7Dg8htwweGIB6jABCagowTqpTys_IjEnBKWNMnpMZKC6o1Jm8JFcx7gFYmoOekeUzfmHjDy12feKrxCbrN1psVjQeY49tUvmQFHYXbLerbZc4HwI2tq99l7Ro4xDwlLwmF5VtIt783Dn5WC3fF2tavL5sFk8FdULLngrtUiyF5lss7VbJcWcsFegUy8GBFtxlW8cRVC4YcMmyUliRY8pLwKp0Yk7up95D8J8Dxt60dXTYNLZDP0TDMsm5UJDx_9GUcSFkCmpE2YS64GMMWJlDqFsbjoaBOdk1k10z2jUnu-ZUf_dTb6OzTTUKcnX8DXLGda7yfOT4xMXx1e0wmL0fQjdK-qP8G_MdiJk</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Winkler, Anton</creator><creator>Wäsle, Johann</creator><creator>Sattelmayer, Thomas</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><author>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Combustion</topic><topic>Combustion. Flame</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Noise</topic><topic>Research Article</topic><topic>Spectra</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkler, Anton</creatorcontrib><creatorcontrib>Wäsle, Johann</creatorcontrib><creatorcontrib>Sattelmayer, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkler, Anton</au><au>Wäsle, Johann</au><au>Sattelmayer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a HS-LIF-system for Lagrangian correlation measurement</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>46</volume><issue>4</issue><spage>607</spage><epage>616</epage><pages>607-616</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to and upon the frequency proportional to f −2 in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-008-0585-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2009-04, Vol.46 (4), p.607-616
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_1642237062
source Springer Nature
subjects Applied sciences
Combustion
Combustion. Flame
Computational fluid dynamics
Energy
Energy. Thermal use of fuels
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Exact sciences and technology
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Noise
Research Article
Spectra
Theoretical studies
Theoretical studies. Data and constants. Metering
Turbulence
Turbulent flow
Wavenumber
title Development of a HS-LIF-system for Lagrangian correlation measurement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20HS-LIF-system%20for%20Lagrangian%20correlation%20measurement&rft.jtitle=Experiments%20in%20fluids&rft.au=Winkler,%20Anton&rft.date=2009-04-01&rft.volume=46&rft.issue=4&rft.spage=607&rft.epage=616&rft.pages=607-616&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-008-0585-2&rft_dat=%3Cproquest_cross%3E1512334507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512334507&rft_id=info:pmid/&rfr_iscdi=true