Loading…
Development of a HS-LIF-system for Lagrangian correlation measurement
Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the...
Saved in:
Published in: | Experiments in fluids 2009-04, Vol.46 (4), p.607-616 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3 |
container_end_page | 616 |
container_issue | 4 |
container_start_page | 607 |
container_title | Experiments in fluids |
container_volume | 46 |
creator | Winkler, Anton Wäsle, Johann Sattelmayer, Thomas |
description | Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to
and upon the frequency proportional to
f
−2
in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model. |
doi_str_mv | 10.1007/s00348-008-0585-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642237062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512334507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwA9iyILEYzh-JnRGVllaKxADMlutcqlRJXOwEqf-eVEGMMNzdcM_7Dg8htwweGIB6jABCagowTqpTys_IjEnBKWNMnpMZKC6o1Jm8JFcx7gFYmoOekeUzfmHjDy12feKrxCbrN1psVjQeY49tUvmQFHYXbLerbZc4HwI2tq99l7Ro4xDwlLwmF5VtIt783Dn5WC3fF2tavL5sFk8FdULLngrtUiyF5lss7VbJcWcsFegUy8GBFtxlW8cRVC4YcMmyUliRY8pLwKp0Yk7up95D8J8Dxt60dXTYNLZDP0TDMsm5UJDx_9GUcSFkCmpE2YS64GMMWJlDqFsbjoaBOdk1k10z2jUnu-ZUf_dTb6OzTTUKcnX8DXLGda7yfOT4xMXx1e0wmL0fQjdK-qP8G_MdiJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512334507</pqid></control><display><type>article</type><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><source>Springer Nature</source><creator>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</creator><creatorcontrib>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</creatorcontrib><description>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to
and upon the frequency proportional to
f
−2
in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-008-0585-2</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Combustion ; Combustion. Flame ; Computational fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact sciences and technology ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Noise ; Research Article ; Spectra ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent flow ; Wavenumber</subject><ispartof>Experiments in fluids, 2009-04, Vol.46 (4), p.607-616</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</citedby><cites>FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21289799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Winkler, Anton</creatorcontrib><creatorcontrib>Wäsle, Johann</creatorcontrib><creatorcontrib>Sattelmayer, Thomas</creatorcontrib><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to
and upon the frequency proportional to
f
−2
in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</description><subject>Applied sciences</subject><subject>Combustion</subject><subject>Combustion. Flame</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Noise</subject><subject>Research Article</subject><subject>Spectra</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Wavenumber</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwA9iyILEYzh-JnRGVllaKxADMlutcqlRJXOwEqf-eVEGMMNzdcM_7Dg8htwweGIB6jABCagowTqpTys_IjEnBKWNMnpMZKC6o1Jm8JFcx7gFYmoOekeUzfmHjDy12feKrxCbrN1psVjQeY49tUvmQFHYXbLerbZc4HwI2tq99l7Ro4xDwlLwmF5VtIt783Dn5WC3fF2tavL5sFk8FdULLngrtUiyF5lss7VbJcWcsFegUy8GBFtxlW8cRVC4YcMmyUliRY8pLwKp0Yk7up95D8J8Dxt60dXTYNLZDP0TDMsm5UJDx_9GUcSFkCmpE2YS64GMMWJlDqFsbjoaBOdk1k10z2jUnu-ZUf_dTb6OzTTUKcnX8DXLGda7yfOT4xMXx1e0wmL0fQjdK-qP8G_MdiJk</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Winkler, Anton</creator><creator>Wäsle, Johann</creator><creator>Sattelmayer, Thomas</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Development of a HS-LIF-system for Lagrangian correlation measurement</title><author>Winkler, Anton ; Wäsle, Johann ; Sattelmayer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Combustion</topic><topic>Combustion. Flame</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Noise</topic><topic>Research Article</topic><topic>Spectra</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkler, Anton</creatorcontrib><creatorcontrib>Wäsle, Johann</creatorcontrib><creatorcontrib>Sattelmayer, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkler, Anton</au><au>Wäsle, Johann</au><au>Sattelmayer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a HS-LIF-system for Lagrangian correlation measurement</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>46</volume><issue>4</issue><spage>607</spage><epage>616</epage><pages>607-616</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Within the presented work, a key assumption for a combustion noise model is validated. Heat release fluctuations are the main reason for the noise emission of turbulent premixed flames. Within the combustion noise model of Hirsch et al. [31st Symposium (Int.) on Combustion, pp 1435–1441, 2006], the heat release is computed in the wavenumber domain and transferred into the frequency domain, subsequently. The transformation of the spectra requires a power law dependence of the scalar spectra upon the wavenumber proportional to
and upon the frequency proportional to
f
−2
in the inertial subrange. The validation of the latter assumption requires a measurement system, which allows time dependent recording of fluid properties, e.g. the progress variable. These are provided by a HS-LIF-system, which supports a repetition rate of 1 kHz with sufficient energy to detect OH-radicals. From the high speed video data, the motion of the flame front is reconstructed. The presented study shows the set up of the HS-LIF-system as well as the various image post processing steps, including data binarization, flame front tracking and finally, computation of the lagrangian correlation for the progress variable. It can be shown that the spectral distribution of the progress variable in the Lagrangian frame is as assumed by the above mentioned combustion noise model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-008-0585-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2009-04, Vol.46 (4), p.607-616 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642237062 |
source | Springer Nature |
subjects | Applied sciences Combustion Combustion. Flame Computational fluid dynamics Energy Energy. Thermal use of fuels Engineering Engineering Fluid Dynamics Engineering Thermodynamics Exact sciences and technology Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer Noise Research Article Spectra Theoretical studies Theoretical studies. Data and constants. Metering Turbulence Turbulent flow Wavenumber |
title | Development of a HS-LIF-system for Lagrangian correlation measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20HS-LIF-system%20for%20Lagrangian%20correlation%20measurement&rft.jtitle=Experiments%20in%20fluids&rft.au=Winkler,%20Anton&rft.date=2009-04-01&rft.volume=46&rft.issue=4&rft.spage=607&rft.epage=616&rft.pages=607-616&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-008-0585-2&rft_dat=%3Cproquest_cross%3E1512334507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-38c5ed382bedab74eda6153ec7190c0832c6bc2e0793102416d3a39e52d0efdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512334507&rft_id=info:pmid/&rfr_iscdi=true |