Loading…

Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering

Planar laser Rayleigh scattering (PLRS) from condensed CO 2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2011-06, Vol.50 (6), p.1651-1657
Main Authors: Do, Hyungrok, Im, Seong-kyun, Mungal, M. Godfrey, Cappelli, Mark A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43
cites cdi_FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43
container_end_page 1657
container_issue 6
container_start_page 1651
container_title Experiments in fluids
container_volume 50
creator Do, Hyungrok
Im, Seong-kyun
Mungal, M. Godfrey
Cappelli, Mark A.
description Planar laser Rayleigh scattering (PLRS) from condensed CO 2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.
doi_str_mv 10.1007/s00348-010-1028-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642237822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642237822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AHfdCG6qeUnapksZ_IIBRdRtSNN0zJBpa167GH-9qTO41E0ugfMul0PIOdAroLS4Rkq5kCkFmgJlMhUHZAaCsxQAxCGZ0YLxVMhcHJMTxDWlkJVUzsjzu8NRe_fl2lWCY28Ddq0ziWu9HZJ6NEMytjjoEBMnpve61SHxGm1IXvTWW7f6SNDoYbAhAqfkqNEe7dk-5-Tt7vZ18ZAun-4fFzfL1HAphrQWdZ0J2VRFYRnTVSmsrWpdlJVogOVNDCOBS8kaqTMW57NMyrw0kmY6qwWfk8tdbx-6z9HioDYOjfVxnu1GVJALxngh4_MvmgHjPKorIwo71IQOMdhG9cFtdNgqoGoSrXaiFf35M6mmJRf7eh01-Cbo1jj8PWTTDgETx3Yc9pMoG9S6G0MbJf1R_g31BY2h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512330109</pqid></control><display><type>article</type><title>Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering</title><source>Springer Link</source><creator>Do, Hyungrok ; Im, Seong-kyun ; Mungal, M. Godfrey ; Cappelli, Mark A.</creator><creatorcontrib>Do, Hyungrok ; Im, Seong-kyun ; Mungal, M. Godfrey ; Cappelli, Mark A.</creatorcontrib><description>Planar laser Rayleigh scattering (PLRS) from condensed CO 2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-010-1028-4</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Boundary layer ; Compressible flows; shock and detonation phenomena ; Downstream effects ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Instrumentation for fluid dynamics ; Lasers ; Physics ; Rayleigh scattering ; Research Article ; Separation ; Shock-wave interactions and shock effects ; Turbulent boundary layer ; Upstream ; Wind tunnels</subject><ispartof>Experiments in fluids, 2011-06, Vol.50 (6), p.1651-1657</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43</citedby><cites>FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24223414$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Hyungrok</creatorcontrib><creatorcontrib>Im, Seong-kyun</creatorcontrib><creatorcontrib>Mungal, M. Godfrey</creatorcontrib><creatorcontrib>Cappelli, Mark A.</creatorcontrib><title>Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Planar laser Rayleigh scattering (PLRS) from condensed CO 2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.</description><subject>Boundary layer</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Downstream effects</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation for fluid dynamics</subject><subject>Lasers</subject><subject>Physics</subject><subject>Rayleigh scattering</subject><subject>Research Article</subject><subject>Separation</subject><subject>Shock-wave interactions and shock effects</subject><subject>Turbulent boundary layer</subject><subject>Upstream</subject><subject>Wind tunnels</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AHfdCG6qeUnapksZ_IIBRdRtSNN0zJBpa167GH-9qTO41E0ugfMul0PIOdAroLS4Rkq5kCkFmgJlMhUHZAaCsxQAxCGZ0YLxVMhcHJMTxDWlkJVUzsjzu8NRe_fl2lWCY28Ddq0ziWu9HZJ6NEMytjjoEBMnpve61SHxGm1IXvTWW7f6SNDoYbAhAqfkqNEe7dk-5-Tt7vZ18ZAun-4fFzfL1HAphrQWdZ0J2VRFYRnTVSmsrWpdlJVogOVNDCOBS8kaqTMW57NMyrw0kmY6qwWfk8tdbx-6z9HioDYOjfVxnu1GVJALxngh4_MvmgHjPKorIwo71IQOMdhG9cFtdNgqoGoSrXaiFf35M6mmJRf7eh01-Cbo1jj8PWTTDgETx3Yc9pMoG9S6G0MbJf1R_g31BY2h</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Do, Hyungrok</creator><creator>Im, Seong-kyun</creator><creator>Mungal, M. Godfrey</creator><creator>Cappelli, Mark A.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering</title><author>Do, Hyungrok ; Im, Seong-kyun ; Mungal, M. Godfrey ; Cappelli, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Downstream effects</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation for fluid dynamics</topic><topic>Lasers</topic><topic>Physics</topic><topic>Rayleigh scattering</topic><topic>Research Article</topic><topic>Separation</topic><topic>Shock-wave interactions and shock effects</topic><topic>Turbulent boundary layer</topic><topic>Upstream</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Hyungrok</creatorcontrib><creatorcontrib>Im, Seong-kyun</creatorcontrib><creatorcontrib>Mungal, M. Godfrey</creatorcontrib><creatorcontrib>Cappelli, Mark A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Hyungrok</au><au>Im, Seong-kyun</au><au>Mungal, M. Godfrey</au><au>Cappelli, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>50</volume><issue>6</issue><spage>1651</spage><epage>1657</epage><pages>1651-1657</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Planar laser Rayleigh scattering (PLRS) from condensed CO 2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-010-1028-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2011-06, Vol.50 (6), p.1651-1657
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_1642237822
source Springer Link
subjects Boundary layer
Compressible flows
shock and detonation phenomena
Downstream effects
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Exact sciences and technology
Fluid dynamics
Fluid- and Aerodynamics
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Instrumentation for fluid dynamics
Lasers
Physics
Rayleigh scattering
Research Article
Separation
Shock-wave interactions and shock effects
Turbulent boundary layer
Upstream
Wind tunnels
title Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20supersonic%20inlet%20duct%20unstart%20using%20planar%20laser%20Rayleigh%20scattering&rft.jtitle=Experiments%20in%20fluids&rft.au=Do,%20Hyungrok&rft.date=2011-06-01&rft.volume=50&rft.issue=6&rft.spage=1651&rft.epage=1657&rft.pages=1651-1657&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-010-1028-4&rft_dat=%3Cproquest_cross%3E1642237822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-d4dd548fb77e22ab94eebda79b4f126fb4fc813882f8a52072258869c805a5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512330109&rft_id=info:pmid/&rfr_iscdi=true