Loading…

On the logarithmic region in wall turbulence

Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2013-02, Vol.716, p.np-np, Article R3
Main Authors: Marusic, Ivan, Monty, Jason P., Hultmark, Marcus, Smits, Alexander J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63
cites cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63
container_end_page np
container_issue
container_start_page np
container_title Journal of fluid mechanics
container_volume 716
creator Marusic, Ivan
Monty, Jason P.
Hultmark, Marcus
Smits, Alexander J.
description Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $ for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.
doi_str_mv 10.1017/jfm.2012.511
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642244703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_511</cupid><sourcerecordid>2929157701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs7f8CAGxed8d4kM2mWUnxBoRtdh0x6p02ZR01mEP-9U-xCRHB1N989nPMxdo2QIaC621VNxgF5liOesAnKQqeqkPkpmwBwniJyOGcXMe4AUIBWEzZbtUm_paTuNjb4ftt4lwTa-K5NfJt82LpO-iGUQ02to0t2Vtk60tXxTtnb48Pr4jldrp5eFvfL1EnF-1SXpeJakxBAMudKEAmyCi06ULZwpa4IIc9dVTi3JitxroTOy6oSa6dtIabs9jt3H7r3gWJvGh8d1bVtqRuiwUJyLqUC8T-aCzkHjWOLKbv5he66IbTjEIOCI2ip53qkZt-UC12MgSqzD76x4dMgmINlM1o2B8tmtDzi2RG3TRn8ekM_Uv96-AL1BHzT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321094989</pqid></control><display><type>article</type><title>On the logarithmic region in wall turbulence</title><source>Cambridge University Press</source><creator>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</creator><creatorcontrib>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</creatorcontrib><description>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $ for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.511</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layers ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Pipe flow ; Rapids ; Reynolds number ; Surface layer ; Turbulence ; Turbulent flow ; Uncertainty ; Walls</subject><ispartof>Journal of fluid mechanics, 2013-02, Vol.716, p.np-np, Article R3</ispartof><rights>2013 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</citedby><cites>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012005113/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Marusic, Ivan</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><title>On the logarithmic region in wall turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $ for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</description><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Pipe flow</subject><subject>Rapids</subject><subject>Reynolds number</subject><subject>Surface layer</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Uncertainty</subject><subject>Walls</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs7f8CAGxed8d4kM2mWUnxBoRtdh0x6p02ZR01mEP-9U-xCRHB1N989nPMxdo2QIaC621VNxgF5liOesAnKQqeqkPkpmwBwniJyOGcXMe4AUIBWEzZbtUm_paTuNjb4ftt4lwTa-K5NfJt82LpO-iGUQ02to0t2Vtk60tXxTtnb48Pr4jldrp5eFvfL1EnF-1SXpeJakxBAMudKEAmyCi06ULZwpa4IIc9dVTi3JitxroTOy6oSa6dtIabs9jt3H7r3gWJvGh8d1bVtqRuiwUJyLqUC8T-aCzkHjWOLKbv5he66IbTjEIOCI2ip53qkZt-UC12MgSqzD76x4dMgmINlM1o2B8tmtDzi2RG3TRn8ekM_Uv96-AL1BHzT</recordid><startdate>20130210</startdate><enddate>20130210</enddate><creator>Marusic, Ivan</creator><creator>Monty, Jason P.</creator><creator>Hultmark, Marcus</creator><creator>Smits, Alexander J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130210</creationdate><title>On the logarithmic region in wall turbulence</title><author>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Pipe flow</topic><topic>Rapids</topic><topic>Reynolds number</topic><topic>Surface layer</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Uncertainty</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marusic, Ivan</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marusic, Ivan</au><au>Monty, Jason P.</au><au>Hultmark, Marcus</au><au>Smits, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the logarithmic region in wall turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-02-10</date><risdate>2013</risdate><volume>716</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $ for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.511</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2013-02, Vol.716, p.np-np, Article R3
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642244703
source Cambridge University Press
subjects Boundary layer
Boundary layers
Flow velocity
Fluid dynamics
Fluid flow
Fluid mechanics
Pipe flow
Rapids
Reynolds number
Surface layer
Turbulence
Turbulent flow
Uncertainty
Walls
title On the logarithmic region in wall turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20logarithmic%20region%20in%20wall%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Marusic,%20Ivan&rft.date=2013-02-10&rft.volume=716&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2012.511&rft_dat=%3Cproquest_cross%3E2929157701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321094989&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_511&rfr_iscdi=true