Loading…
On the logarithmic region in wall turbulence
Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally $2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^...
Saved in:
Published in: | Journal of fluid mechanics 2013-02, Vol.716, p.np-np, Article R3 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63 |
container_end_page | np |
container_issue | |
container_start_page | np |
container_title | Journal of fluid mechanics |
container_volume | 716 |
creator | Marusic, Ivan Monty, Jason P. Hultmark, Marcus Smits, Alexander J. |
description | Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally
$2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $
for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall. |
doi_str_mv | 10.1017/jfm.2012.511 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642244703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_511</cupid><sourcerecordid>2929157701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs7f8CAGxed8d4kM2mWUnxBoRtdh0x6p02ZR01mEP-9U-xCRHB1N989nPMxdo2QIaC621VNxgF5liOesAnKQqeqkPkpmwBwniJyOGcXMe4AUIBWEzZbtUm_paTuNjb4ftt4lwTa-K5NfJt82LpO-iGUQ02to0t2Vtk60tXxTtnb48Pr4jldrp5eFvfL1EnF-1SXpeJakxBAMudKEAmyCi06ULZwpa4IIc9dVTi3JitxroTOy6oSa6dtIabs9jt3H7r3gWJvGh8d1bVtqRuiwUJyLqUC8T-aCzkHjWOLKbv5he66IbTjEIOCI2ip53qkZt-UC12MgSqzD76x4dMgmINlM1o2B8tmtDzi2RG3TRn8ekM_Uv96-AL1BHzT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321094989</pqid></control><display><type>article</type><title>On the logarithmic region in wall turbulence</title><source>Cambridge University Press</source><creator>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</creator><creatorcontrib>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</creatorcontrib><description>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally
$2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $
for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.511</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layers ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Pipe flow ; Rapids ; Reynolds number ; Surface layer ; Turbulence ; Turbulent flow ; Uncertainty ; Walls</subject><ispartof>Journal of fluid mechanics, 2013-02, Vol.716, p.np-np, Article R3</ispartof><rights>2013 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</citedby><cites>FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012005113/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Marusic, Ivan</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><title>On the logarithmic region in wall turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally
$2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $
for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</description><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Pipe flow</subject><subject>Rapids</subject><subject>Reynolds number</subject><subject>Surface layer</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Uncertainty</subject><subject>Walls</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs7f8CAGxed8d4kM2mWUnxBoRtdh0x6p02ZR01mEP-9U-xCRHB1N989nPMxdo2QIaC621VNxgF5liOesAnKQqeqkPkpmwBwniJyOGcXMe4AUIBWEzZbtUm_paTuNjb4ftt4lwTa-K5NfJt82LpO-iGUQ02to0t2Vtk60tXxTtnb48Pr4jldrp5eFvfL1EnF-1SXpeJakxBAMudKEAmyCi06ULZwpa4IIc9dVTi3JitxroTOy6oSa6dtIabs9jt3H7r3gWJvGh8d1bVtqRuiwUJyLqUC8T-aCzkHjWOLKbv5he66IbTjEIOCI2ip53qkZt-UC12MgSqzD76x4dMgmINlM1o2B8tmtDzi2RG3TRn8ekM_Uv96-AL1BHzT</recordid><startdate>20130210</startdate><enddate>20130210</enddate><creator>Marusic, Ivan</creator><creator>Monty, Jason P.</creator><creator>Hultmark, Marcus</creator><creator>Smits, Alexander J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130210</creationdate><title>On the logarithmic region in wall turbulence</title><author>Marusic, Ivan ; Monty, Jason P. ; Hultmark, Marcus ; Smits, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Pipe flow</topic><topic>Rapids</topic><topic>Reynolds number</topic><topic>Surface layer</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Uncertainty</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marusic, Ivan</creatorcontrib><creatorcontrib>Monty, Jason P.</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Smits, Alexander J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marusic, Ivan</au><au>Monty, Jason P.</au><au>Hultmark, Marcus</au><au>Smits, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the logarithmic region in wall turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-02-10</date><risdate>2013</risdate><volume>716</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally
$2\times 1{0}^{4} \lt {\mathit{Re}}_{\tau } \lt 6\times 1{0}^{5} $
for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.511</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2013-02, Vol.716, p.np-np, Article R3 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642244703 |
source | Cambridge University Press |
subjects | Boundary layer Boundary layers Flow velocity Fluid dynamics Fluid flow Fluid mechanics Pipe flow Rapids Reynolds number Surface layer Turbulence Turbulent flow Uncertainty Walls |
title | On the logarithmic region in wall turbulence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20logarithmic%20region%20in%20wall%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Marusic,%20Ivan&rft.date=2013-02-10&rft.volume=716&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2012.511&rft_dat=%3Cproquest_cross%3E2929157701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-9bb7299e330e45273ee3ea71a1c07a6cb9fe1055cf6ccdea4187395bff3dc9a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321094989&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_511&rfr_iscdi=true |