Loading…

Bottom-up limits to Newfoundland capelin (Mallotus villosus) rebuilding: the euphausiid hypothesis

Capelin (Mallotus villosus) is the key forage fish species in the Newfoundland and Labrador Shelf ecosystem. Capelin stocks collapsed in the early 1990s, concurrent with declines in “northern” Atlantic cod, Gadus morhua. Neither has fully recovered yet. Changes in growth, condition, and behaviour ac...

Full description

Saved in:
Bibliographic Details
Published in:ICES journal of marine science 2014-06, Vol.71 (4), p.775-783
Main Authors: Obradovich, Shannon G., Carruthers, Erin H., Rose, George A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capelin (Mallotus villosus) is the key forage fish species in the Newfoundland and Labrador Shelf ecosystem. Capelin stocks collapsed in the early 1990s, concurrent with declines in “northern” Atlantic cod, Gadus morhua. Neither has fully recovered yet. Changes in growth, condition, and behaviour accompanied capelin declines on the northern Grand Banks (NGB), and remain two decades later. Feeding, growth, and condition of NGB capelin were all lower when compared with capelin from the eastern Scotian Shelf (ESS), where abundance increased following predator declines. For age 2–5 capelin of both sexes, all but one of five comparable age–sex groups were significantly larger on the ESS (e.g. age 3 females average 169 mm on the ESS and 151 mm on the NGB). Neither temperature nor density-dependence explain these differences. However, dietary differences were prominent. ESS capelin had higher total fullness indices (TFIs) than NGB fish at all sizes [mean TFI ESS = 1.43 (± 1.14), mean TFI NGB = 0.48 (± 0.70)]. Euphausiids (especially Thysanoessa spp.) were a main dietary component on the ESS but not on the NGB. Stable isotope analyses (δ15N and δ13C) for NGB capelin also indicated few dietary euphausiids. Trophic fractionation of δ 15N was 4.740/00, suggesting NGB capelin were food limited. Capelin recovery on the Newfoundland and Labrador Shelf appears limited by bottom-up forcing, in particular lack of euphausiid prey.
ISSN:1054-3139
1095-9289
DOI:10.1093/icesjms/fst184