Loading…
Laminar flow past a spinning bullet-shaped body at moderate angular velocities
We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless an...
Saved in:
Published in: | Journal of fluids and structures 2013-11, Vol.43, p.200-219 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3 |
container_end_page | 219 |
container_issue | |
container_start_page | 200 |
container_title | Journal of fluids and structures |
container_volume | 43 |
creator | Jiménez-González, J.I. Sanmiguel-Rojas, E. Sevilla, A. Martínez-Bazán, C. |
description | We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re |
doi_str_mv | 10.1016/j.jfluidstructs.2013.07.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642258881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974613001503</els_id><sourcerecordid>1506377779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</originalsourceid><addsrcrecordid>eNqNkMFO3DAURS1UJKbAP1hi003Cc-zEjrqq0NAijWDTri2P_QyOPElqO4P4e4Kmm67a1duce3XfIeSGQc2AdbdDPfi4BJdLWmzJdQOM1yBrAHZGNgz6tlJd03wiG1Cqr3opugvyOecBAHrB2YY87swhjCZRH6dXOptcqKF5DuMYxme6X2LEUuUXM6Oj-8m9UVPoYXKYTEFqxuclrtkjxsmGEjBfkXNvYsbrP_eS_Lrf_rz7Ue2evj_cfdtVlve8VF5wgRI6KaUTDQjOnQe-l7LhyAy2fdsayzyiY2zdaTohvQfjlVRSqMbzS_Ll1Dun6feCuehDyBZjNCNOS9asE03TKqXYv9EWOr4Okf2Kfj2hNk05J_R6TuFg0ptmoD-E60H_JVx_CNcg9Sp8TW9PaVwfPwZMOtuAo0UXEtqi3RT-q-cd3Y-Rsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506377779</pqid></control><display><type>article</type><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</creator><creatorcontrib>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</creatorcontrib><description>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re<450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2013.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Angular velocity ; Bifurcation ; Computational fluid dynamics ; Fluid flow ; Freezing ; Frozen ; Frozen regime ; Laminar flow ; Rotation body ; Spinning ; Spiral mode ; Spirals ; Wake instability</subject><ispartof>Journal of fluids and structures, 2013-11, Vol.43, p.200-219</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</citedby><cites>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiménez-González, J.I.</creatorcontrib><creatorcontrib>Sanmiguel-Rojas, E.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><creatorcontrib>Martínez-Bazán, C.</creatorcontrib><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><title>Journal of fluids and structures</title><description>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re<450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</description><subject>Angular velocity</subject><subject>Bifurcation</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Freezing</subject><subject>Frozen</subject><subject>Frozen regime</subject><subject>Laminar flow</subject><subject>Rotation body</subject><subject>Spinning</subject><subject>Spiral mode</subject><subject>Spirals</subject><subject>Wake instability</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAURS1UJKbAP1hi003Cc-zEjrqq0NAijWDTri2P_QyOPElqO4P4e4Kmm67a1duce3XfIeSGQc2AdbdDPfi4BJdLWmzJdQOM1yBrAHZGNgz6tlJd03wiG1Cqr3opugvyOecBAHrB2YY87swhjCZRH6dXOptcqKF5DuMYxme6X2LEUuUXM6Oj-8m9UVPoYXKYTEFqxuclrtkjxsmGEjBfkXNvYsbrP_eS_Lrf_rz7Ue2evj_cfdtVlve8VF5wgRI6KaUTDQjOnQe-l7LhyAy2fdsayzyiY2zdaTohvQfjlVRSqMbzS_Ll1Dun6feCuehDyBZjNCNOS9asE03TKqXYv9EWOr4Okf2Kfj2hNk05J_R6TuFg0ptmoD-E60H_JVx_CNcg9Sp8TW9PaVwfPwZMOtuAo0UXEtqi3RT-q-cd3Y-Rsw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Jiménez-González, J.I.</creator><creator>Sanmiguel-Rojas, E.</creator><creator>Sevilla, A.</creator><creator>Martínez-Bazán, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201311</creationdate><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><author>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular velocity</topic><topic>Bifurcation</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Freezing</topic><topic>Frozen</topic><topic>Frozen regime</topic><topic>Laminar flow</topic><topic>Rotation body</topic><topic>Spinning</topic><topic>Spiral mode</topic><topic>Spirals</topic><topic>Wake instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-González, J.I.</creatorcontrib><creatorcontrib>Sanmiguel-Rojas, E.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><creatorcontrib>Martínez-Bazán, C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-González, J.I.</au><au>Sanmiguel-Rojas, E.</au><au>Sevilla, A.</au><au>Martínez-Bazán, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</atitle><jtitle>Journal of fluids and structures</jtitle><date>2013-11</date><risdate>2013</risdate><volume>43</volume><spage>200</spage><epage>219</epage><pages>200-219</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><abstract>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re<450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2013.07.001</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2013-11, Vol.43, p.200-219 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642258881 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Angular velocity Bifurcation Computational fluid dynamics Fluid flow Freezing Frozen Frozen regime Laminar flow Rotation body Spinning Spiral mode Spirals Wake instability |
title | Laminar flow past a spinning bullet-shaped body at moderate angular velocities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laminar%20flow%20past%20a%20spinning%20bullet-shaped%20body%20at%20moderate%20angular%20velocities&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Jim%C3%A9nez-Gonz%C3%A1lez,%20J.I.&rft.date=2013-11&rft.volume=43&rft.spage=200&rft.epage=219&rft.pages=200-219&rft.issn=0889-9746&rft.eissn=1095-8622&rft_id=info:doi/10.1016/j.jfluidstructs.2013.07.001&rft_dat=%3Cproquest_cross%3E1506377779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506377779&rft_id=info:pmid/&rfr_iscdi=true |