Loading…

Laminar flow past a spinning bullet-shaped body at moderate angular velocities

We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluids and structures 2013-11, Vol.43, p.200-219
Main Authors: Jiménez-González, J.I., Sanmiguel-Rojas, E., Sevilla, A., Martínez-Bazán, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3
cites cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3
container_end_page 219
container_issue
container_start_page 200
container_title Journal of fluids and structures
container_volume 43
creator Jiménez-González, J.I.
Sanmiguel-Rojas, E.
Sevilla, A.
Martínez-Bazán, C.
description We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re
doi_str_mv 10.1016/j.jfluidstructs.2013.07.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642258881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974613001503</els_id><sourcerecordid>1506377779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</originalsourceid><addsrcrecordid>eNqNkMFO3DAURS1UJKbAP1hi003Cc-zEjrqq0NAijWDTri2P_QyOPElqO4P4e4Kmm67a1duce3XfIeSGQc2AdbdDPfi4BJdLWmzJdQOM1yBrAHZGNgz6tlJd03wiG1Cqr3opugvyOecBAHrB2YY87swhjCZRH6dXOptcqKF5DuMYxme6X2LEUuUXM6Oj-8m9UVPoYXKYTEFqxuclrtkjxsmGEjBfkXNvYsbrP_eS_Lrf_rz7Ue2evj_cfdtVlve8VF5wgRI6KaUTDQjOnQe-l7LhyAy2fdsayzyiY2zdaTohvQfjlVRSqMbzS_Ll1Dun6feCuehDyBZjNCNOS9asE03TKqXYv9EWOr4Okf2Kfj2hNk05J_R6TuFg0ptmoD-E60H_JVx_CNcg9Sp8TW9PaVwfPwZMOtuAo0UXEtqi3RT-q-cd3Y-Rsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506377779</pqid></control><display><type>article</type><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</creator><creatorcontrib>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</creatorcontrib><description>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re&lt;450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2013.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Angular velocity ; Bifurcation ; Computational fluid dynamics ; Fluid flow ; Freezing ; Frozen ; Frozen regime ; Laminar flow ; Rotation body ; Spinning ; Spiral mode ; Spirals ; Wake instability</subject><ispartof>Journal of fluids and structures, 2013-11, Vol.43, p.200-219</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</citedby><cites>FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiménez-González, J.I.</creatorcontrib><creatorcontrib>Sanmiguel-Rojas, E.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><creatorcontrib>Martínez-Bazán, C.</creatorcontrib><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><title>Journal of fluids and structures</title><description>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re&lt;450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</description><subject>Angular velocity</subject><subject>Bifurcation</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Freezing</subject><subject>Frozen</subject><subject>Frozen regime</subject><subject>Laminar flow</subject><subject>Rotation body</subject><subject>Spinning</subject><subject>Spiral mode</subject><subject>Spirals</subject><subject>Wake instability</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAURS1UJKbAP1hi003Cc-zEjrqq0NAijWDTri2P_QyOPElqO4P4e4Kmm67a1duce3XfIeSGQc2AdbdDPfi4BJdLWmzJdQOM1yBrAHZGNgz6tlJd03wiG1Cqr3opugvyOecBAHrB2YY87swhjCZRH6dXOptcqKF5DuMYxme6X2LEUuUXM6Oj-8m9UVPoYXKYTEFqxuclrtkjxsmGEjBfkXNvYsbrP_eS_Lrf_rz7Ue2evj_cfdtVlve8VF5wgRI6KaUTDQjOnQe-l7LhyAy2fdsayzyiY2zdaTohvQfjlVRSqMbzS_Ll1Dun6feCuehDyBZjNCNOS9asE03TKqXYv9EWOr4Okf2Kfj2hNk05J_R6TuFg0ptmoD-E60H_JVx_CNcg9Sp8TW9PaVwfPwZMOtuAo0UXEtqi3RT-q-cd3Y-Rsw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Jiménez-González, J.I.</creator><creator>Sanmiguel-Rojas, E.</creator><creator>Sevilla, A.</creator><creator>Martínez-Bazán, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201311</creationdate><title>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</title><author>Jiménez-González, J.I. ; Sanmiguel-Rojas, E. ; Sevilla, A. ; Martínez-Bazán, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular velocity</topic><topic>Bifurcation</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Freezing</topic><topic>Frozen</topic><topic>Frozen regime</topic><topic>Laminar flow</topic><topic>Rotation body</topic><topic>Spinning</topic><topic>Spiral mode</topic><topic>Spirals</topic><topic>Wake instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-González, J.I.</creatorcontrib><creatorcontrib>Sanmiguel-Rojas, E.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><creatorcontrib>Martínez-Bazán, C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-González, J.I.</au><au>Sanmiguel-Rojas, E.</au><au>Sevilla, A.</au><au>Martínez-Bazán, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laminar flow past a spinning bullet-shaped body at moderate angular velocities</atitle><jtitle>Journal of fluids and structures</jtitle><date>2013-11</date><risdate>2013</risdate><volume>43</volume><spage>200</spage><epage>219</epage><pages>200-219</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><abstract>We present a numerical study of the flow past a spinning bullet-shaped body of length-to-diameter ratio L/D=2, focusing on the evolution of the forces and flow regimes that appear depending on the values of the two governing parameters, namely the Reynolds number, Re=ρw∞D/μ, and the dimensionless angular velocity, Ω=ωD/(2w∞), where ρ, μ and w∞ are the free-stream density, viscosity and velocity, respectively, and ω is the angular velocity of the body. The parametric study covers the range 0≤Ω≤0.4 for Re&lt;450, corresponding to laminar flow and moderate rotation velocities. It is shown that the (Re,Ω) parameter plane can be divided into four regions, corresponding to the destabilization of several instability modes. In the range 0≤Ω≲0.2, three different flow regimes take place as Re increases keeping constant Ω: axisymmetric, frozen and spiral flow regimes respectively; the latter leading to a swirling configuration of vortices curling up around the axis, caused by a combination of the frozen mode and the vortex shedding. However, at Ω≃0.2, a new frozen spiral mode takes place for large enough values of Re, where two counter-rotating vortices spiral around the axis, as a result of a lock-in process of the vortex shedding associated to the unsteady spiral regime, being this mode the single unstable one existent for Ω≥0.225. An exhaustive study of the dependence of the drag and lift forces on Ω and Re is also presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2013.07.001</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-9746
ispartof Journal of fluids and structures, 2013-11, Vol.43, p.200-219
issn 0889-9746
1095-8622
language eng
recordid cdi_proquest_miscellaneous_1642258881
source ScienceDirect Freedom Collection 2022-2024
subjects Angular velocity
Bifurcation
Computational fluid dynamics
Fluid flow
Freezing
Frozen
Frozen regime
Laminar flow
Rotation body
Spinning
Spiral mode
Spirals
Wake instability
title Laminar flow past a spinning bullet-shaped body at moderate angular velocities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laminar%20flow%20past%20a%20spinning%20bullet-shaped%20body%20at%20moderate%20angular%20velocities&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Jim%C3%A9nez-Gonz%C3%A1lez,%20J.I.&rft.date=2013-11&rft.volume=43&rft.spage=200&rft.epage=219&rft.pages=200-219&rft.issn=0889-9746&rft.eissn=1095-8622&rft_id=info:doi/10.1016/j.jfluidstructs.2013.07.001&rft_dat=%3Cproquest_cross%3E1506377779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f434e706777d420433df03b7723e1ae5955ac1feed11943a647ff0af8787482f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506377779&rft_id=info:pmid/&rfr_iscdi=true