Loading…
Modelling turbulent skin-friction control using linearized Navier–Stokes equations
Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is...
Saved in:
Published in: | Journal of fluid mechanics 2012-07, Vol.702, p.403-414 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linearized Navier–Stokes equations are solved to investigate the impact on the growth of near-wall turbulent streaks that arises from streamwise-travelling waves of spanwise wall velocity. The percentage change in streak amplification due to the travelling waves, over a range of wave parameters, is compared to published direct numerical simulation (DNS) predictions of turbulent skin-friction reduction; a clear correlation between the two is observed. Linearized simulations at a much higher Reynolds number, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that there is a close correlation between DNS data of drag reduction and a very simple characteristic of the ‘generalized’ Stokes layer generated by the streamwise-travelling waves. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2012.189 |