Loading…
Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system
A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential...
Saved in:
Published in: | Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093 |
---|---|
cites | cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093 |
container_end_page | 3512 |
container_issue | 24 |
container_start_page | 3506 |
container_title | Journal of polymer science. Part A, Polymer chemistry |
container_volume | 52 |
creator | Pinheiro, Adriana C Casagrande, Adriana C. A Casagrande, Osvaldo L., Jr |
description | A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512 |
doi_str_mv | 10.1002/pola.27416 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642262097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642262097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</originalsourceid><addsrcrecordid>eNp9ks1qFTEUgIMoeL268QUMiCCFqUlmJplZtkWrcmkFrRY34dxMUtNmkmsyQzvFhY_gM_ok5nZqFy7cJIHznY_zE4SeUrJLCWGvNsHBLhMV5ffQgpK2LUhNm_toQZpGFJxVpw_Ro5TOCcmxulmgHyvrNUTswuXvn7867ZMdJpw1kx6-TU57jT34oEK_CTmkE15P2Hqc3-MN1utor2GwweMxWX-GAV_bqIK3Y5-N3qoL7fAAvtM9VjCAm9KAUz50_xg9MOCSfnJ7L9HJm9efDt4Wq-PDdwd7q0LVZckLUBXhZC1KUXasKquqYqJroGuYYabhRtCy7YgQpANTr7lqQChDNKuNUkSQtlyil7N3E8P3UadB9jYp7Rx4HcYkKa8Y44y0IqPP_0HPwxh9ri5TjBHKqNgKd2ZKxZBS1EZuou0hTpISuV2E3C5C3iwiwy9ulZAUOBPBK5vuMljT0rbKfS0RnblL6_T0H6P8cLza--su5hyb53l1lwPxQvI8r1p-OTqU7dHn0_fiK5H7mX828waChLOY6zj5mLvi-UOUNaO0_AND7rTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622012179</pqid></control><display><type>article</type><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</creator><creatorcontrib>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</creatorcontrib><description>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.27416</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley</publisher><subject>Applied sciences ; Boehmite ; Catalysts ; Composites ; crystal structure ; Crystallization ; differential scanning calorimetry ; Exact sciences and technology ; Forms of application and semi-finished materials ; graphene ; linear low-density polyethylene ; mechanical properties ; melting ; metal-organic catalyst ; metallocene catalyst ; nanocomposite ; Nanocomposites ; nanoparticles ; Nanostructure ; polyethylene ; Polyethylenes ; Polymer industry, paints, wood ; Polymerization ; storage modulus ; tandem catalyst system ; Technology of polymers ; temperature ; Titanium dioxide ; transmission electron microscopy</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</citedby><cites>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinheiro, Adriana C</creatorcontrib><creatorcontrib>Casagrande, Adriana C. A</creatorcontrib><creatorcontrib>Casagrande, Osvaldo L., Jr</creatorcontrib><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><description>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</description><subject>Applied sciences</subject><subject>Boehmite</subject><subject>Catalysts</subject><subject>Composites</subject><subject>crystal structure</subject><subject>Crystallization</subject><subject>differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>graphene</subject><subject>linear low-density polyethylene</subject><subject>mechanical properties</subject><subject>melting</subject><subject>metal-organic catalyst</subject><subject>metallocene catalyst</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>storage modulus</subject><subject>tandem catalyst system</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Titanium dioxide</subject><subject>transmission electron microscopy</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ks1qFTEUgIMoeL268QUMiCCFqUlmJplZtkWrcmkFrRY34dxMUtNmkmsyQzvFhY_gM_ok5nZqFy7cJIHznY_zE4SeUrJLCWGvNsHBLhMV5ffQgpK2LUhNm_toQZpGFJxVpw_Ro5TOCcmxulmgHyvrNUTswuXvn7867ZMdJpw1kx6-TU57jT34oEK_CTmkE15P2Hqc3-MN1utor2GwweMxWX-GAV_bqIK3Y5-N3qoL7fAAvtM9VjCAm9KAUz50_xg9MOCSfnJ7L9HJm9efDt4Wq-PDdwd7q0LVZckLUBXhZC1KUXasKquqYqJroGuYYabhRtCy7YgQpANTr7lqQChDNKuNUkSQtlyil7N3E8P3UadB9jYp7Rx4HcYkKa8Y44y0IqPP_0HPwxh9ri5TjBHKqNgKd2ZKxZBS1EZuou0hTpISuV2E3C5C3iwiwy9ulZAUOBPBK5vuMljT0rbKfS0RnblL6_T0H6P8cLza--su5hyb53l1lwPxQvI8r1p-OTqU7dHn0_fiK5H7mX828waChLOY6zj5mLvi-UOUNaO0_AND7rTQ</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Pinheiro, Adriana C</creator><creator>Casagrande, Adriana C. A</creator><creator>Casagrande, Osvaldo L., Jr</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20141215</creationdate><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><author>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Boehmite</topic><topic>Catalysts</topic><topic>Composites</topic><topic>crystal structure</topic><topic>Crystallization</topic><topic>differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>graphene</topic><topic>linear low-density polyethylene</topic><topic>mechanical properties</topic><topic>melting</topic><topic>metal-organic catalyst</topic><topic>metallocene catalyst</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>storage modulus</topic><topic>tandem catalyst system</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Titanium dioxide</topic><topic>transmission electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro, Adriana C</creatorcontrib><creatorcontrib>Casagrande, Adriana C. A</creatorcontrib><creatorcontrib>Casagrande, Osvaldo L., Jr</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro, Adriana C</au><au>Casagrande, Adriana C. A</au><au>Casagrande, Osvaldo L., Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>52</volume><issue>24</issue><spage>3506</spage><epage>3512</epage><pages>3506-3512</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</abstract><cop>Hoboken, NJ</cop><pub>Wiley</pub><doi>10.1002/pola.27416</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-624X |
ispartof | Journal of polymer science. Part A, Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512 |
issn | 0887-624X 1099-0518 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642262097 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Boehmite Catalysts Composites crystal structure Crystallization differential scanning calorimetry Exact sciences and technology Forms of application and semi-finished materials graphene linear low-density polyethylene mechanical properties melting metal-organic catalyst metallocene catalyst nanocomposite Nanocomposites nanoparticles Nanostructure polyethylene Polyethylenes Polymer industry, paints, wood Polymerization storage modulus tandem catalyst system Technology of polymers temperature Titanium dioxide transmission electron microscopy |
title | Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20low%E2%80%90density%20polyethylene%20nanocomposites%20by%20in%20situ%20polymerization%20using%20a%20zirconium%E2%80%90nickel%20tandem%20catalyst%20system&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Pinheiro,%20Adriana%20C&rft.date=2014-12-15&rft.volume=52&rft.issue=24&rft.spage=3506&rft.epage=3512&rft.pages=3506-3512&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.27416&rft_dat=%3Cproquest_cross%3E1642262097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622012179&rft_id=info:pmid/&rfr_iscdi=true |