Loading…

Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system

A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512
Main Authors: Pinheiro, Adriana C, Casagrande, Adriana C. A, Casagrande, Osvaldo L., Jr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093
cites cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093
container_end_page 3512
container_issue 24
container_start_page 3506
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 52
creator Pinheiro, Adriana C
Casagrande, Adriana C. A
Casagrande, Osvaldo L., Jr
description A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512
doi_str_mv 10.1002/pola.27416
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642262097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642262097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</originalsourceid><addsrcrecordid>eNp9ks1qFTEUgIMoeL268QUMiCCFqUlmJplZtkWrcmkFrRY34dxMUtNmkmsyQzvFhY_gM_ok5nZqFy7cJIHznY_zE4SeUrJLCWGvNsHBLhMV5ffQgpK2LUhNm_toQZpGFJxVpw_Ro5TOCcmxulmgHyvrNUTswuXvn7867ZMdJpw1kx6-TU57jT34oEK_CTmkE15P2Hqc3-MN1utor2GwweMxWX-GAV_bqIK3Y5-N3qoL7fAAvtM9VjCAm9KAUz50_xg9MOCSfnJ7L9HJm9efDt4Wq-PDdwd7q0LVZckLUBXhZC1KUXasKquqYqJroGuYYabhRtCy7YgQpANTr7lqQChDNKuNUkSQtlyil7N3E8P3UadB9jYp7Rx4HcYkKa8Y44y0IqPP_0HPwxh9ri5TjBHKqNgKd2ZKxZBS1EZuou0hTpISuV2E3C5C3iwiwy9ulZAUOBPBK5vuMljT0rbKfS0RnblL6_T0H6P8cLza--su5hyb53l1lwPxQvI8r1p-OTqU7dHn0_fiK5H7mX828waChLOY6zj5mLvi-UOUNaO0_AND7rTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622012179</pqid></control><display><type>article</type><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</creator><creatorcontrib>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</creatorcontrib><description>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.27416</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley</publisher><subject>Applied sciences ; Boehmite ; Catalysts ; Composites ; crystal structure ; Crystallization ; differential scanning calorimetry ; Exact sciences and technology ; Forms of application and semi-finished materials ; graphene ; linear low-density polyethylene ; mechanical properties ; melting ; metal-organic catalyst ; metallocene catalyst ; nanocomposite ; Nanocomposites ; nanoparticles ; Nanostructure ; polyethylene ; Polyethylenes ; Polymer industry, paints, wood ; Polymerization ; storage modulus ; tandem catalyst system ; Technology of polymers ; temperature ; Titanium dioxide ; transmission electron microscopy</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</citedby><cites>FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28919424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinheiro, Adriana C</creatorcontrib><creatorcontrib>Casagrande, Adriana C. A</creatorcontrib><creatorcontrib>Casagrande, Osvaldo L., Jr</creatorcontrib><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><description>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</description><subject>Applied sciences</subject><subject>Boehmite</subject><subject>Catalysts</subject><subject>Composites</subject><subject>crystal structure</subject><subject>Crystallization</subject><subject>differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>graphene</subject><subject>linear low-density polyethylene</subject><subject>mechanical properties</subject><subject>melting</subject><subject>metal-organic catalyst</subject><subject>metallocene catalyst</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>storage modulus</subject><subject>tandem catalyst system</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Titanium dioxide</subject><subject>transmission electron microscopy</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ks1qFTEUgIMoeL268QUMiCCFqUlmJplZtkWrcmkFrRY34dxMUtNmkmsyQzvFhY_gM_ok5nZqFy7cJIHznY_zE4SeUrJLCWGvNsHBLhMV5ffQgpK2LUhNm_toQZpGFJxVpw_Ro5TOCcmxulmgHyvrNUTswuXvn7867ZMdJpw1kx6-TU57jT34oEK_CTmkE15P2Hqc3-MN1utor2GwweMxWX-GAV_bqIK3Y5-N3qoL7fAAvtM9VjCAm9KAUz50_xg9MOCSfnJ7L9HJm9efDt4Wq-PDdwd7q0LVZckLUBXhZC1KUXasKquqYqJroGuYYabhRtCy7YgQpANTr7lqQChDNKuNUkSQtlyil7N3E8P3UadB9jYp7Rx4HcYkKa8Y44y0IqPP_0HPwxh9ri5TjBHKqNgKd2ZKxZBS1EZuou0hTpISuV2E3C5C3iwiwy9ulZAUOBPBK5vuMljT0rbKfS0RnblL6_T0H6P8cLza--su5hyb53l1lwPxQvI8r1p-OTqU7dHn0_fiK5H7mX828waChLOY6zj5mLvi-UOUNaO0_AND7rTQ</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Pinheiro, Adriana C</creator><creator>Casagrande, Adriana C. A</creator><creator>Casagrande, Osvaldo L., Jr</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20141215</creationdate><title>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</title><author>Pinheiro, Adriana C ; Casagrande, Adriana C. A ; Casagrande, Osvaldo L., Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Boehmite</topic><topic>Catalysts</topic><topic>Composites</topic><topic>crystal structure</topic><topic>Crystallization</topic><topic>differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>graphene</topic><topic>linear low-density polyethylene</topic><topic>mechanical properties</topic><topic>melting</topic><topic>metal-organic catalyst</topic><topic>metallocene catalyst</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>storage modulus</topic><topic>tandem catalyst system</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Titanium dioxide</topic><topic>transmission electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro, Adriana C</creatorcontrib><creatorcontrib>Casagrande, Adriana C. A</creatorcontrib><creatorcontrib>Casagrande, Osvaldo L., Jr</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro, Adriana C</au><au>Casagrande, Adriana C. A</au><au>Casagrande, Osvaldo L., Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>52</volume><issue>24</issue><spage>3506</spage><epage>3512</epage><pages>3506-3512</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO₂, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {Tpᴹˢ}NiCl (1) and Cp₂ZrCl₂ (2), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO₂, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3506–3512</abstract><cop>Hoboken, NJ</cop><pub>Wiley</pub><doi>10.1002/pola.27416</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2014-12, Vol.52 (24), p.3506-3512
issn 0887-624X
1099-0518
language eng
recordid cdi_proquest_miscellaneous_1642262097
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Boehmite
Catalysts
Composites
crystal structure
Crystallization
differential scanning calorimetry
Exact sciences and technology
Forms of application and semi-finished materials
graphene
linear low-density polyethylene
mechanical properties
melting
metal-organic catalyst
metallocene catalyst
nanocomposite
Nanocomposites
nanoparticles
Nanostructure
polyethylene
Polyethylenes
Polymer industry, paints, wood
Polymerization
storage modulus
tandem catalyst system
Technology of polymers
temperature
Titanium dioxide
transmission electron microscopy
title Linear low‐density polyethylene nanocomposites by in situ polymerization using a zirconium‐nickel tandem catalyst system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20low%E2%80%90density%20polyethylene%20nanocomposites%20by%20in%20situ%20polymerization%20using%20a%20zirconium%E2%80%90nickel%20tandem%20catalyst%20system&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Pinheiro,%20Adriana%20C&rft.date=2014-12-15&rft.volume=52&rft.issue=24&rft.spage=3506&rft.epage=3512&rft.pages=3506-3512&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.27416&rft_dat=%3Cproquest_cross%3E1642262097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5336-ac4060b7373d24344427d8ad82f2f86f7139d0770daf5b6c8a7cf0e25fcc07093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622012179&rft_id=info:pmid/&rfr_iscdi=true