Loading…
Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage
We study gravity drainage using a new 1‐D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution....
Saved in:
Published in: | Journal of geophysical research. Oceans 2013-07, Vol.118 (7), p.3370-3386 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13 |
---|---|
cites | cdi_FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13 |
container_end_page | 3386 |
container_issue | 7 |
container_start_page | 3370 |
container_title | Journal of geophysical research. Oceans |
container_volume | 118 |
creator | Griewank, Philipp J. Notz, Dirk |
description | We study gravity drainage using a new 1‐D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution. Optimal estimates of the free parameters as well as the parametrization performance remain stable for vertical grid resolutions from 1 to 30 mm. We find a strong link between sea ice growth rate and bulk salinity for constant boundary conditions but only a weak link for more realistic boundary conditions. We also demonstrate that surface warming can trigger brine convection over the whole ice layer. Over a growth season, replacing the convective parametrization with constant initial salinities leads to an overall 3% discrepancy of stored energy, thermal resistance, and salt release. We also derive from our convective parametrization a simplified, numerically cheap and stable gravity‐drainage parametrization. This parametrization results in an approximately 1% discrepancy of stored energy, thermal resistance, and salt release compared to the convective parametrization. A similarly low discrepancy to our complex parametrization can be reached by simply prescribing a depth‐dependent salinity profile.
Key Points
We present a physically consistent 1D parametrization of gravity drainage.
We simulate warming induced full‐depth desalination.
Gravity drainage influences long‐term sea‐ice evolution. |
doi_str_mv | 10.1002/jgrc.20247 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642271462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492640281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhgdRsLS98RcERJDC1CSTzcelbHXbslYRRfAmnsnHmu1MUpNZ2_n3znbrXnhRc3PC4XkfEt6qekHwKcGYvlmvsjmlmDLxpDqghKtaUUWe7u9i9rw6LmWNpyOJZEwdVD8uYgmrn0NBIQ4JtTlEh-wYoQ-mIIgWFQcomGnpCnQhwhBSRD6nHgEi9Rnqk3UdKsPGjih5tMrwOwwjshkmeOWOqmceuuKOH-Zh9fX9uy_z83r5cXExf7usgSkmaoMxEZw5y4gTmEpLG8eEsZi1sm35rOWNIwTIjDrFQHnrFQbpPabKKwmkOaxe77w3Of3auDLoPhTjug6iS5uiCWeUCsI4_T_KFOVsesTW-vIfdJ02OU4fmYSNbChhlE_UyY4yOZWSndc3OfSQR02w3lajt9Xo-2om-NWDEoqBzmeIJpR9ggohpbznyI67DZ0bHzHqy8Xn-V93vcuEMri7fQbyteaiETP97WqhP6iGXi2_n-tPzR_VbqrH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638321426</pqid></control><display><type>article</type><title>Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Griewank, Philipp J. ; Notz, Dirk</creator><creatorcontrib>Griewank, Philipp J. ; Notz, Dirk</creatorcontrib><description>We study gravity drainage using a new 1‐D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution. Optimal estimates of the free parameters as well as the parametrization performance remain stable for vertical grid resolutions from 1 to 30 mm. We find a strong link between sea ice growth rate and bulk salinity for constant boundary conditions but only a weak link for more realistic boundary conditions. We also demonstrate that surface warming can trigger brine convection over the whole ice layer. Over a growth season, replacing the convective parametrization with constant initial salinities leads to an overall 3% discrepancy of stored energy, thermal resistance, and salt release. We also derive from our convective parametrization a simplified, numerically cheap and stable gravity‐drainage parametrization. This parametrization results in an approximately 1% discrepancy of stored energy, thermal resistance, and salt release compared to the convective parametrization. A similarly low discrepancy to our complex parametrization can be reached by simply prescribing a depth‐dependent salinity profile.
Key Points
We present a physically consistent 1D parametrization of gravity drainage.
We simulate warming induced full‐depth desalination.
Gravity drainage influences long‐term sea‐ice evolution.</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/jgrc.20247</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>binary alloy solidification ; Boundary conditions ; brine fluxes ; Brines ; Desalination ; Drainage ; Drainage measurement ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics ; Global warming ; Gravitation ; gravity drainage ; Ice ; Marine ; Mathematical models ; Parametrization ; Physics of the oceans ; Salinity ; Sea ice ; Surface temperature ; Thermal resistance ; thermodynamics</subject><ispartof>Journal of geophysical research. Oceans, 2013-07, Vol.118 (7), p.3370-3386</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13</citedby><cites>FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27788847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Griewank, Philipp J.</creatorcontrib><creatorcontrib>Notz, Dirk</creatorcontrib><title>Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>We study gravity drainage using a new 1‐D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution. Optimal estimates of the free parameters as well as the parametrization performance remain stable for vertical grid resolutions from 1 to 30 mm. We find a strong link between sea ice growth rate and bulk salinity for constant boundary conditions but only a weak link for more realistic boundary conditions. We also demonstrate that surface warming can trigger brine convection over the whole ice layer. Over a growth season, replacing the convective parametrization with constant initial salinities leads to an overall 3% discrepancy of stored energy, thermal resistance, and salt release. We also derive from our convective parametrization a simplified, numerically cheap and stable gravity‐drainage parametrization. This parametrization results in an approximately 1% discrepancy of stored energy, thermal resistance, and salt release compared to the convective parametrization. A similarly low discrepancy to our complex parametrization can be reached by simply prescribing a depth‐dependent salinity profile.
Key Points
We present a physically consistent 1D parametrization of gravity drainage.
We simulate warming induced full‐depth desalination.
Gravity drainage influences long‐term sea‐ice evolution.</description><subject>binary alloy solidification</subject><subject>Boundary conditions</subject><subject>brine fluxes</subject><subject>Brines</subject><subject>Desalination</subject><subject>Drainage</subject><subject>Drainage measurement</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Gravitation</subject><subject>gravity drainage</subject><subject>Ice</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Parametrization</subject><subject>Physics of the oceans</subject><subject>Salinity</subject><subject>Sea ice</subject><subject>Surface temperature</subject><subject>Thermal resistance</subject><subject>thermodynamics</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEUhgdRsLS98RcERJDC1CSTzcelbHXbslYRRfAmnsnHmu1MUpNZ2_n3znbrXnhRc3PC4XkfEt6qekHwKcGYvlmvsjmlmDLxpDqghKtaUUWe7u9i9rw6LmWNpyOJZEwdVD8uYgmrn0NBIQ4JtTlEh-wYoQ-mIIgWFQcomGnpCnQhwhBSRD6nHgEi9Rnqk3UdKsPGjih5tMrwOwwjshkmeOWOqmceuuKOH-Zh9fX9uy_z83r5cXExf7usgSkmaoMxEZw5y4gTmEpLG8eEsZi1sm35rOWNIwTIjDrFQHnrFQbpPabKKwmkOaxe77w3Of3auDLoPhTjug6iS5uiCWeUCsI4_T_KFOVsesTW-vIfdJ02OU4fmYSNbChhlE_UyY4yOZWSndc3OfSQR02w3lajt9Xo-2om-NWDEoqBzmeIJpR9ggohpbznyI67DZ0bHzHqy8Xn-V93vcuEMri7fQbyteaiETP97WqhP6iGXi2_n-tPzR_VbqrH</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Griewank, Philipp J.</creator><creator>Notz, Dirk</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201307</creationdate><title>Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage</title><author>Griewank, Philipp J. ; Notz, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>binary alloy solidification</topic><topic>Boundary conditions</topic><topic>brine fluxes</topic><topic>Brines</topic><topic>Desalination</topic><topic>Drainage</topic><topic>Drainage measurement</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Gravitation</topic><topic>gravity drainage</topic><topic>Ice</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Parametrization</topic><topic>Physics of the oceans</topic><topic>Salinity</topic><topic>Sea ice</topic><topic>Surface temperature</topic><topic>Thermal resistance</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griewank, Philipp J.</creatorcontrib><creatorcontrib>Notz, Dirk</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griewank, Philipp J.</au><au>Notz, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2013-07</date><risdate>2013</risdate><volume>118</volume><issue>7</issue><spage>3370</spage><epage>3386</epage><pages>3370-3386</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>We study gravity drainage using a new 1‐D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution. Optimal estimates of the free parameters as well as the parametrization performance remain stable for vertical grid resolutions from 1 to 30 mm. We find a strong link between sea ice growth rate and bulk salinity for constant boundary conditions but only a weak link for more realistic boundary conditions. We also demonstrate that surface warming can trigger brine convection over the whole ice layer. Over a growth season, replacing the convective parametrization with constant initial salinities leads to an overall 3% discrepancy of stored energy, thermal resistance, and salt release. We also derive from our convective parametrization a simplified, numerically cheap and stable gravity‐drainage parametrization. This parametrization results in an approximately 1% discrepancy of stored energy, thermal resistance, and salt release compared to the convective parametrization. A similarly low discrepancy to our complex parametrization can be reached by simply prescribing a depth‐dependent salinity profile.
Key Points
We present a physically consistent 1D parametrization of gravity drainage.
We simulate warming induced full‐depth desalination.
Gravity drainage influences long‐term sea‐ice evolution.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrc.20247</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9275 |
ispartof | Journal of geophysical research. Oceans, 2013-07, Vol.118 (7), p.3370-3386 |
issn | 2169-9275 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642271462 |
source | Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection |
subjects | binary alloy solidification Boundary conditions brine fluxes Brines Desalination Drainage Drainage measurement Earth, ocean, space Exact sciences and technology External geophysics Geophysics Global warming Gravitation gravity drainage Ice Marine Mathematical models Parametrization Physics of the oceans Salinity Sea ice Surface temperature Thermal resistance thermodynamics |
title | Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20brine%20dynamics%20and%20sea%20ice%20desalination%20from%20a%201-D%20model%20study%20of%20gravity%20drainage&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Griewank,%20Philipp%20J.&rft.date=2013-07&rft.volume=118&rft.issue=7&rft.spage=3370&rft.epage=3386&rft.pages=3370-3386&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/jgrc.20247&rft_dat=%3Cproquest_cross%3E1492640281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4947-c001764ed41e7028d23e47cd04b8bb65b63e11a152e94a9fdf90a8ff029f98a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638321426&rft_id=info:pmid/&rfr_iscdi=true |