Loading…
Water Leaching of Chelated Pb Complexes from Post-Phytoremediation Biomass
There is a pollution risk when disposing of post-remediation biomass from chelate-assisted metal phytoremediation. To assess this risk, we measured water extractable lead (Pb) in Brassica rapa tissues with ICP-MS, determined if chelated Pb was present with HPLC-MS, and identified Pb storage location...
Saved in:
Published in: | Water, air, and soil pollution air, and soil pollution, 2013-08, Vol.224 (8), p.1-11, Article 1615 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is a pollution risk when disposing of post-remediation biomass from chelate-assisted metal phytoremediation. To assess this risk, we measured water extractable lead (Pb) in
Brassica rapa
tissues with ICP-MS, determined if chelated Pb was present with HPLC-MS, and identified Pb storage locations using electron microscopy with x-ray microanalysis. Ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were used to enhance Pb movement from contaminated soil to above ground
B. rapa
tissues. With Pb-EDTA, 92 % (+/−5) of Pb was water extractable from dried tissues and complexed as Pb-EDTA. Electron microscopy and x-ray microanalysis showed Pb stored in xylem vessels. After composting of plant tissues, 79 % (+/−2) of Pb was water extractable and complexed as Pb-EDTA. Total plant Pb accumulation was lower from soils amended with EDDS, but only 6.7 % (+/−0.3) of Pb was water extractable from dried tissues and 55 % (+/−25) from wet tissues of plants grown in EDDS-amended soils. Pb-EDDS was detected in tissues but not at quantifiable levels. This work emphasizes the need for proper treatment and disposal of contaminated post-remediation plant tissues, especially when using EDTA. Composting of plant tissues containing Pb-EDTA was shown to significantly reduce waste material volume and slightly reduce the water extractable fraction, but further immobilization of Pb would be necessary to minimize transport risk. Amending Pb-contaminated soils with EDDS can result in plant biomass with a lower potential to leach Pb into groundwater, but the lower Pb accumulation with EDDS would require longer phytoremediation time compared with EDTA. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-013-1615-0 |