Loading…

Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators

SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectr...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2014-12, Vol.21 (6), p.722-743
Main Authors: Al-Fhaid, A.S., Serra-Capizzano, S., Sesana, D., Zaka Ullah, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3
cites
container_end_page 743
container_issue 6
container_start_page 722
container_title Numerical linear algebra with applications
container_volume 21
creator Al-Fhaid, A.S.
Serra-Capizzano, S.
Sesana, D.
Zaka Ullah, M.
description SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form ((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.1922
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642275247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612292281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</originalsourceid><addsrcrecordid>eNpdkdFuFCEUhidGk9a2SR9hEm_ai2kPzADDZbtqbbrWWDfRO8ICs6GyMMJM7b6CTy20RhOvDuc_Hyc__FV1jOAMAeBz7-QZ4hi_qPYRcN4gAvRlOTNoSIvJXvU6pXsAoIS3-9WvL9ZvZidj8yDdbOoT6XVt7Mb4p_601jZN0a7nyQZfl-FN3LnwUI_RqOC1LXpeUYehTubHbLwy6amR29GVwVbm-0WU4xjDo819ka2fzCZKV4fRRDmFmA6rV4N0yRz9qQfV6v271eJDs_x0db24WDaqA4QbTdaKs55qIJKxfhiQItBjxjmWRAEyQIiWfc9bTRRFFHGt27WWWnd9p4b2oDp5XpvdZL9pElublHFOehPmJBDtMGYEdyyjb_5D78McfTaXKQqop5T2mWqeqZ_WmZ0YY35i3AkEogQiciCiBCJulxel_uPzz5rHv7yM3wVlLSPi6-2VuPz47fPiDt6KVfsbcTOR_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660186668</pqid></control><display><type>article</type><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><source>Wiley</source><creator>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</creator><creatorcontrib>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</creatorcontrib><description>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form ((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1922</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Copyrights ; eigenvalue distribution ; Eigenvalues ; integral equation ; Linear systems ; Mathematical analysis ; Mathematical models ; Operators ; Sampling ; sampling matrices ; singular value distribution</subject><ispartof>Numerical linear algebra with applications, 2014-12, Vol.21 (6), p.722-743</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Al-Fhaid, A.S.</creatorcontrib><creatorcontrib>Serra-Capizzano, S.</creatorcontrib><creatorcontrib>Sesana, D.</creatorcontrib><creatorcontrib>Zaka Ullah, M.</creatorcontrib><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form ((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Copyrights</subject><subject>eigenvalue distribution</subject><subject>Eigenvalues</subject><subject>integral equation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Sampling</subject><subject>sampling matrices</subject><subject>singular value distribution</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkdFuFCEUhidGk9a2SR9hEm_ai2kPzADDZbtqbbrWWDfRO8ICs6GyMMJM7b6CTy20RhOvDuc_Hyc__FV1jOAMAeBz7-QZ4hi_qPYRcN4gAvRlOTNoSIvJXvU6pXsAoIS3-9WvL9ZvZidj8yDdbOoT6XVt7Mb4p_601jZN0a7nyQZfl-FN3LnwUI_RqOC1LXpeUYehTubHbLwy6amR29GVwVbm-0WU4xjDo819ka2fzCZKV4fRRDmFmA6rV4N0yRz9qQfV6v271eJDs_x0db24WDaqA4QbTdaKs55qIJKxfhiQItBjxjmWRAEyQIiWfc9bTRRFFHGt27WWWnd9p4b2oDp5XpvdZL9pElublHFOehPmJBDtMGYEdyyjb_5D78McfTaXKQqop5T2mWqeqZ_WmZ0YY35i3AkEogQiciCiBCJulxel_uPzz5rHv7yM3wVlLSPi6-2VuPz47fPiDt6KVfsbcTOR_A</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Al-Fhaid, A.S.</creator><creator>Serra-Capizzano, S.</creator><creator>Sesana, D.</creator><creator>Zaka Ullah, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><author>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Copyrights</topic><topic>eigenvalue distribution</topic><topic>Eigenvalues</topic><topic>integral equation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Sampling</topic><topic>sampling matrices</topic><topic>singular value distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Fhaid, A.S.</creatorcontrib><creatorcontrib>Serra-Capizzano, S.</creatorcontrib><creatorcontrib>Sesana, D.</creatorcontrib><creatorcontrib>Zaka Ullah, M.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Fhaid, A.S.</au><au>Serra-Capizzano, S.</au><au>Sesana, D.</au><au>Zaka Ullah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2014-12</date><risdate>2014</risdate><volume>21</volume><issue>6</issue><spage>722</spage><epage>743</epage><pages>722-743</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form ((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1922</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2014-12, Vol.21 (6), p.722-743
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_1642275247
source Wiley
subjects Approximation
Copyrights
eigenvalue distribution
Eigenvalues
integral equation
Linear systems
Mathematical analysis
Mathematical models
Operators
Sampling
sampling matrices
singular value distribution
title Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular-value%20(and%20eigenvalue)%20distribution%20and%20Krylov%20preconditioning%20of%20sequences%20of%20sampling%20matrices%20approximating%20integral%20operators&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Al-Fhaid,%20A.S.&rft.date=2014-12&rft.volume=21&rft.issue=6&rft.spage=722&rft.epage=743&rft.pages=722-743&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1922&rft_dat=%3Cproquest_wiley%3E3612292281%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660186668&rft_id=info:pmid/&rfr_iscdi=true