Loading…
Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators
SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectr...
Saved in:
Published in: | Numerical linear algebra with applications 2014-12, Vol.21 (6), p.722-743 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3 |
---|---|
cites | |
container_end_page | 743 |
container_issue | 6 |
container_start_page | 722 |
container_title | Numerical linear algebra with applications |
container_volume | 21 |
creator | Al-Fhaid, A.S. Serra-Capizzano, S. Sesana, D. Zaka Ullah, M. |
description | SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map
f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form
((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.1922 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642275247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612292281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</originalsourceid><addsrcrecordid>eNpdkdFuFCEUhidGk9a2SR9hEm_ai2kPzADDZbtqbbrWWDfRO8ICs6GyMMJM7b6CTy20RhOvDuc_Hyc__FV1jOAMAeBz7-QZ4hi_qPYRcN4gAvRlOTNoSIvJXvU6pXsAoIS3-9WvL9ZvZidj8yDdbOoT6XVt7Mb4p_601jZN0a7nyQZfl-FN3LnwUI_RqOC1LXpeUYehTubHbLwy6amR29GVwVbm-0WU4xjDo819ka2fzCZKV4fRRDmFmA6rV4N0yRz9qQfV6v271eJDs_x0db24WDaqA4QbTdaKs55qIJKxfhiQItBjxjmWRAEyQIiWfc9bTRRFFHGt27WWWnd9p4b2oDp5XpvdZL9pElublHFOehPmJBDtMGYEdyyjb_5D78McfTaXKQqop5T2mWqeqZ_WmZ0YY35i3AkEogQiciCiBCJulxel_uPzz5rHv7yM3wVlLSPi6-2VuPz47fPiDt6KVfsbcTOR_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660186668</pqid></control><display><type>article</type><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><source>Wiley</source><creator>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</creator><creatorcontrib>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</creatorcontrib><description>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map
f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form
((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1922</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Copyrights ; eigenvalue distribution ; Eigenvalues ; integral equation ; Linear systems ; Mathematical analysis ; Mathematical models ; Operators ; Sampling ; sampling matrices ; singular value distribution</subject><ispartof>Numerical linear algebra with applications, 2014-12, Vol.21 (6), p.722-743</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Al-Fhaid, A.S.</creatorcontrib><creatorcontrib>Serra-Capizzano, S.</creatorcontrib><creatorcontrib>Sesana, D.</creatorcontrib><creatorcontrib>Zaka Ullah, M.</creatorcontrib><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map
f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form
((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>Copyrights</subject><subject>eigenvalue distribution</subject><subject>Eigenvalues</subject><subject>integral equation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Sampling</subject><subject>sampling matrices</subject><subject>singular value distribution</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkdFuFCEUhidGk9a2SR9hEm_ai2kPzADDZbtqbbrWWDfRO8ICs6GyMMJM7b6CTy20RhOvDuc_Hyc__FV1jOAMAeBz7-QZ4hi_qPYRcN4gAvRlOTNoSIvJXvU6pXsAoIS3-9WvL9ZvZidj8yDdbOoT6XVt7Mb4p_601jZN0a7nyQZfl-FN3LnwUI_RqOC1LXpeUYehTubHbLwy6amR29GVwVbm-0WU4xjDo819ka2fzCZKV4fRRDmFmA6rV4N0yRz9qQfV6v271eJDs_x0db24WDaqA4QbTdaKs55qIJKxfhiQItBjxjmWRAEyQIiWfc9bTRRFFHGt27WWWnd9p4b2oDp5XpvdZL9pElublHFOehPmJBDtMGYEdyyjb_5D78McfTaXKQqop5T2mWqeqZ_WmZ0YY35i3AkEogQiciCiBCJulxel_uPzz5rHv7yM3wVlLSPi6-2VuPz47fPiDt6KVfsbcTOR_A</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Al-Fhaid, A.S.</creator><creator>Serra-Capizzano, S.</creator><creator>Sesana, D.</creator><creator>Zaka Ullah, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</title><author>Al-Fhaid, A.S. ; Serra-Capizzano, S. ; Sesana, D. ; Zaka Ullah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Copyrights</topic><topic>eigenvalue distribution</topic><topic>Eigenvalues</topic><topic>integral equation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Sampling</topic><topic>sampling matrices</topic><topic>singular value distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Fhaid, A.S.</creatorcontrib><creatorcontrib>Serra-Capizzano, S.</creatorcontrib><creatorcontrib>Sesana, D.</creatorcontrib><creatorcontrib>Zaka Ullah, M.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Fhaid, A.S.</au><au>Serra-Capizzano, S.</au><au>Sesana, D.</au><au>Zaka Ullah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2014-12</date><risdate>2014</risdate><volume>21</volume><issue>6</issue><spage>722</spage><epage>743</epage><pages>722-743</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>SUMMARYLet k( ⋅ , ⋅ ) be a continuous kernel defined on Ω × Ω, Ω compact subset of Rd, d ⩾1, and let us consider the integral operator K̃ from C(Ω) into C(Ω) (C(Ω) set of continuous functions on Ω) defined as the map
f(x) → l(x) =∫Ωk(x,y)f(y)dy,x ∈Ω. K̃ is a compact operator and therefore its spectrum forms a bounded sequence having zero as unique accumulation point. Here, we first consider in detail the approximation of K̃ by using rectangle formula in the case where Ω = [0,1], and the step is h = 1 ∕ n. The related linear application can be represented as a matrix An of size n. In accordance with the compact character of the continuous operator, we prove that {An} ∼ σ0 and {An} ∼ λ0, that is, the considered sequence has singular values and eigenvalues clustered at zero. Moreover, the cluster is strong in perfect analogy with the compactness of K̃. Several generalizations are sketched, with special attention to the general case of pure sampling sequences, and few examples and numerical experiments are critically discussed, including the use of GMRES and preconditioned GMRES for large linear systems coming from the numerical approximation of integral equations of the form
((I −K̃)f(t))(x) = g(x),x ∈Ω, with (K̃f(t))(x) =∫Ωk(x,y)f(y)dy and datum g(x). Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1922</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2014-12, Vol.21 (6), p.722-743 |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642275247 |
source | Wiley |
subjects | Approximation Copyrights eigenvalue distribution Eigenvalues integral equation Linear systems Mathematical analysis Mathematical models Operators Sampling sampling matrices singular value distribution |
title | Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular-value%20(and%20eigenvalue)%20distribution%20and%20Krylov%20preconditioning%20of%20sequences%20of%20sampling%20matrices%20approximating%20integral%20operators&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Al-Fhaid,%20A.S.&rft.date=2014-12&rft.volume=21&rft.issue=6&rft.spage=722&rft.epage=743&rft.pages=722-743&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1922&rft_dat=%3Cproquest_wiley%3E3612292281%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4012-d5bc9786d05a778ff1c50827992a5c01e055da8893d5c61619dd3bdadd484cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660186668&rft_id=info:pmid/&rfr_iscdi=true |