Loading…

Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout

Nonlinear self-excited thermoacoustic oscillations appear in systems involving confined combustion in the form of coupled acoustic pressure oscillations and unsteady heat release rate. In this paper, we investigate the nonlinear transition undergone by thermoacoustic oscillations to flame blowout vi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2012-12, Vol.713, p.376-397
Main Authors: Kabiraj, Lipika, Sujith, R. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3
cites cdi_FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3
container_end_page 397
container_issue
container_start_page 376
container_title Journal of fluid mechanics
container_volume 713
creator Kabiraj, Lipika
Sujith, R. I.
description Nonlinear self-excited thermoacoustic oscillations appear in systems involving confined combustion in the form of coupled acoustic pressure oscillations and unsteady heat release rate. In this paper, we investigate the nonlinear transition undergone by thermoacoustic oscillations to flame blowout via intermittency, in response to variation in the location of the combustion source with respect to the acoustic field of the confinement. A ducted laminar premixed conical flame, stabilized on a circular jet exit with a fully developed exit velocity profile, was investigated. Transition to limit cycle oscillations from a non-oscillatory state was observed to occur via a subcritical Hopf bifurcation. Limit cycle oscillations underwent a further bifurcation to quasi-periodic oscillations characterized by the repeated formation of elongated necks in the flame that pinch off as pockets of unburned fuel–air mixture. The quasi-periodic state loses stability, resulting in an intermittent state identified as type II through recurrence analysis of phase space trajectories reconstructed from the acoustic pressure time trace. In this state, the flame undergoes repeated lift-off and reattachment. Instantaneous flame images suggest that the intermittent flame behaviour is influenced by jet flow dynamics.
doi_str_mv 10.1017/jfm.2012.463
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642277570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_463</cupid><sourcerecordid>1642277570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3</originalsourceid><addsrcrecordid>eNqFkUtLAzEYRYMoWKs7f8CACC6cmmTyGndSfEHRhboe0kyiKTNJTTJo_70pLSIi-G2y-E5ubjgAHCM4QRDxi4XpJxgiPCGs2gEjRFhdckboLhhBiHGJEIb74CDGBYSogjUfgacH7zrrtAxF1J0p9aeySbdFetOh91L5ISarCh-V7TqZrHfxsrAu5a1NSTu1KqRrC9PJXhfzzn_4IR2CPSO7qI-25xi83Fw_T-_K2ePt_fRqVirCSCrruZGY13kMhaxVxAgmRKVaWjHeKqx5jbCEymCKoWhbQ-pKC1EbQSspoanG4GyTuwz-fdAxNb2NSueeTufeDWIEY84ph_-jmDGOiBA8oye_0IUfgssfyRRGmELBWabON5QKPsagTbMMtpdh1SDYrGU0WUazltFkGRk_3YbKqGRngnTKxu87mHGKRHYyBpNtrOznwbav-sfrfwV_Af-cmLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221250876</pqid></control><display><type>article</type><title>Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout</title><source>Cambridge University Press</source><creator>Kabiraj, Lipika ; Sujith, R. I.</creator><creatorcontrib>Kabiraj, Lipika ; Sujith, R. I.</creatorcontrib><description>Nonlinear self-excited thermoacoustic oscillations appear in systems involving confined combustion in the form of coupled acoustic pressure oscillations and unsteady heat release rate. In this paper, we investigate the nonlinear transition undergone by thermoacoustic oscillations to flame blowout via intermittency, in response to variation in the location of the combustion source with respect to the acoustic field of the confinement. A ducted laminar premixed conical flame, stabilized on a circular jet exit with a fully developed exit velocity profile, was investigated. Transition to limit cycle oscillations from a non-oscillatory state was observed to occur via a subcritical Hopf bifurcation. Limit cycle oscillations underwent a further bifurcation to quasi-periodic oscillations characterized by the repeated formation of elongated necks in the flame that pinch off as pockets of unburned fuel–air mixture. The quasi-periodic state loses stability, resulting in an intermittent state identified as type II through recurrence analysis of phase space trajectories reconstructed from the acoustic pressure time trace. In this state, the flame undergoes repeated lift-off and reattachment. Instantaneous flame images suggest that the intermittent flame behaviour is influenced by jet flow dynamics.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.463</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustics ; Applied sciences ; Blowouts ; Combustion ; Combustion of gaseous fuels ; Combustion. Flame ; Dynamical systems ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid mechanics ; Heat transfer ; Limit cycle oscillations ; Nonlinear systems ; Nonlinearity ; Oscillations ; Theoretical studies. Data and constants. Metering ; Thermoacoustics ; Thermodynamics</subject><ispartof>Journal of fluid mechanics, 2012-12, Vol.713, p.376-397</ispartof><rights>2012 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3</citedby><cites>FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012004636/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26751801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabiraj, Lipika</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><title>Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Nonlinear self-excited thermoacoustic oscillations appear in systems involving confined combustion in the form of coupled acoustic pressure oscillations and unsteady heat release rate. In this paper, we investigate the nonlinear transition undergone by thermoacoustic oscillations to flame blowout via intermittency, in response to variation in the location of the combustion source with respect to the acoustic field of the confinement. A ducted laminar premixed conical flame, stabilized on a circular jet exit with a fully developed exit velocity profile, was investigated. Transition to limit cycle oscillations from a non-oscillatory state was observed to occur via a subcritical Hopf bifurcation. Limit cycle oscillations underwent a further bifurcation to quasi-periodic oscillations characterized by the repeated formation of elongated necks in the flame that pinch off as pockets of unburned fuel–air mixture. The quasi-periodic state loses stability, resulting in an intermittent state identified as type II through recurrence analysis of phase space trajectories reconstructed from the acoustic pressure time trace. In this state, the flame undergoes repeated lift-off and reattachment. Instantaneous flame images suggest that the intermittent flame behaviour is influenced by jet flow dynamics.</description><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Blowouts</subject><subject>Combustion</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Dynamical systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Heat transfer</subject><subject>Limit cycle oscillations</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermoacoustics</subject><subject>Thermodynamics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEYRYMoWKs7f8CACC6cmmTyGndSfEHRhboe0kyiKTNJTTJo_70pLSIi-G2y-E5ubjgAHCM4QRDxi4XpJxgiPCGs2gEjRFhdckboLhhBiHGJEIb74CDGBYSogjUfgacH7zrrtAxF1J0p9aeySbdFetOh91L5ISarCh-V7TqZrHfxsrAu5a1NSTu1KqRrC9PJXhfzzn_4IR2CPSO7qI-25xi83Fw_T-_K2ePt_fRqVirCSCrruZGY13kMhaxVxAgmRKVaWjHeKqx5jbCEymCKoWhbQ-pKC1EbQSspoanG4GyTuwz-fdAxNb2NSueeTufeDWIEY84ph_-jmDGOiBA8oye_0IUfgssfyRRGmELBWabON5QKPsagTbMMtpdh1SDYrGU0WUazltFkGRk_3YbKqGRngnTKxu87mHGKRHYyBpNtrOznwbav-sfrfwV_Af-cmLk</recordid><startdate>20121225</startdate><enddate>20121225</enddate><creator>Kabiraj, Lipika</creator><creator>Sujith, R. I.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20121225</creationdate><title>Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout</title><author>Kabiraj, Lipika ; Sujith, R. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Blowouts</topic><topic>Combustion</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Dynamical systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Heat transfer</topic><topic>Limit cycle oscillations</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermoacoustics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabiraj, Lipika</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabiraj, Lipika</au><au>Sujith, R. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-12-25</date><risdate>2012</risdate><volume>713</volume><spage>376</spage><epage>397</epage><pages>376-397</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Nonlinear self-excited thermoacoustic oscillations appear in systems involving confined combustion in the form of coupled acoustic pressure oscillations and unsteady heat release rate. In this paper, we investigate the nonlinear transition undergone by thermoacoustic oscillations to flame blowout via intermittency, in response to variation in the location of the combustion source with respect to the acoustic field of the confinement. A ducted laminar premixed conical flame, stabilized on a circular jet exit with a fully developed exit velocity profile, was investigated. Transition to limit cycle oscillations from a non-oscillatory state was observed to occur via a subcritical Hopf bifurcation. Limit cycle oscillations underwent a further bifurcation to quasi-periodic oscillations characterized by the repeated formation of elongated necks in the flame that pinch off as pockets of unburned fuel–air mixture. The quasi-periodic state loses stability, resulting in an intermittent state identified as type II through recurrence analysis of phase space trajectories reconstructed from the acoustic pressure time trace. In this state, the flame undergoes repeated lift-off and reattachment. Instantaneous flame images suggest that the intermittent flame behaviour is influenced by jet flow dynamics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.463</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-12, Vol.713, p.376-397
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642277570
source Cambridge University Press
subjects Acoustics
Applied sciences
Blowouts
Combustion
Combustion of gaseous fuels
Combustion. Flame
Dynamical systems
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid mechanics
Heat transfer
Limit cycle oscillations
Nonlinear systems
Nonlinearity
Oscillations
Theoretical studies. Data and constants. Metering
Thermoacoustics
Thermodynamics
title Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20self-excited%20thermoacoustic%20oscillations:%20intermittency%20and%20flame%20blowout&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kabiraj,%20Lipika&rft.date=2012-12-25&rft.volume=713&rft.spage=376&rft.epage=397&rft.pages=376-397&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.463&rft_dat=%3Cproquest_cross%3E1642277570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-9bfa279999f506dc4f86883cd5367dc2e7912a0cf25208ddf493e889f853aa0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221250876&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_463&rfr_iscdi=true