Loading…

Conversion of microalgae to jet fuel: Process design and simulation

Simulation of microalgae conversion to jet fuel (trademarks from Invensys, micrograph from Wikipedia, jet from Microsoft Clip Art, each of which is pre-authorized for reuse). [Display omitted] •The utility of PRO/II for simulating biomass related processes is established.•PRO/II simulation demonstra...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2014-09, Vol.167, p.349-357
Main Authors: Wang, Hui-Yuan, Bluck, David, Van Wie, Bernard J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3
cites cdi_FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3
container_end_page 357
container_issue
container_start_page 349
container_title Bioresource technology
container_volume 167
creator Wang, Hui-Yuan
Bluck, David
Van Wie, Bernard J.
description Simulation of microalgae conversion to jet fuel (trademarks from Invensys, micrograph from Wikipedia, jet from Microsoft Clip Art, each of which is pre-authorized for reuse). [Display omitted] •The utility of PRO/II for simulating biomass related processes is established.•PRO/II simulation demonstrates feasibility of jet fuel production from microalgae.•A PRO/II case study provides optimal hydrotreating conditions for making Jet B fuel.•H2 recovery from reforming of byproduct adds 7.5–15% to the product value.•Cheap CO2, H2O and nutrient resources are essential for economic feasibility. Microalgae’s aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II’s thermodynamic data manager. Hydrotreating is analyzed within PRO/II’s case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming.
doi_str_mv 10.1016/j.biortech.2014.05.092
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642278493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852414008001</els_id><sourcerecordid>1548637044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCX6h8QeKSMHYcf3ACrYAiVYIDnC3HGRevkrjYSaX-e1ztFo7lNJfnnXk1DyGXDFoGTL47tENMeUX_q-XARAt9C4Y_IzumVddwo-RzsgMjodE9F2fkvJQDAHRM8ZfkjAtjVKfMjuz3abnDXGJaaAp0jj4nN904pGuiB1xp2HB6T7_n5LEUOmKJNwt1y0hLnLfJrTX4irwIbir4-jQvyM_Pn37sr5rrb1--7j9eN15IsTbjgJwFCdIILTkDh2I0XKDRQaLUIAcByI3jIqA3nR-lNiC5D1rhIIfQXZC3x723Of3esKx2jsXjNLkF01Ysk4JzpYXpnkZ7CYyxHv4HrXU7BUJUVB7R-qRSMgZ7m-Ps8r1lYB-02IN91GIftFjobdVSg5enG9sw4_g39uihAm9OgCveTSG7xcfyj9OS9b1Qlftw5LD--S5itsVHXDyOMaNf7ZjiU13-AF0HrSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548637044</pqid></control><display><type>article</type><title>Conversion of microalgae to jet fuel: Process design and simulation</title><source>ScienceDirect Journals</source><creator>Wang, Hui-Yuan ; Bluck, David ; Van Wie, Bernard J.</creator><creatorcontrib>Wang, Hui-Yuan ; Bluck, David ; Van Wie, Bernard J.</creatorcontrib><description>Simulation of microalgae conversion to jet fuel (trademarks from Invensys, micrograph from Wikipedia, jet from Microsoft Clip Art, each of which is pre-authorized for reuse). [Display omitted] •The utility of PRO/II for simulating biomass related processes is established.•PRO/II simulation demonstrates feasibility of jet fuel production from microalgae.•A PRO/II case study provides optimal hydrotreating conditions for making Jet B fuel.•H2 recovery from reforming of byproduct adds 7.5–15% to the product value.•Cheap CO2, H2O and nutrient resources are essential for economic feasibility. Microalgae’s aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II’s thermodynamic data manager. Hydrotreating is analyzed within PRO/II’s case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2014.05.092</identifier><identifier>PMID: 24997379</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air pollution ; Aircraft ; Biological and medical sciences ; Biomass ; Biomass burning ; Biotechnology - methods ; Combustion ; Computer Simulation ; Conversion ; Cooling towers ; Distillation ; Economics ; Flotation ; Freezing ; Fundamental and applied biological sciences. Psychology ; Hydrocarbons - metabolism ; Jet fuel ; Jet fuels ; Microalgae ; Microalgae - metabolism ; Process design ; Reference Standards ; Simulation ; Specific Gravity ; Temperature ; Thermolysis</subject><ispartof>Bioresource technology, 2014-09, Vol.167, p.349-357</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3</citedby><cites>FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28615547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24997379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hui-Yuan</creatorcontrib><creatorcontrib>Bluck, David</creatorcontrib><creatorcontrib>Van Wie, Bernard J.</creatorcontrib><title>Conversion of microalgae to jet fuel: Process design and simulation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Simulation of microalgae conversion to jet fuel (trademarks from Invensys, micrograph from Wikipedia, jet from Microsoft Clip Art, each of which is pre-authorized for reuse). [Display omitted] •The utility of PRO/II for simulating biomass related processes is established.•PRO/II simulation demonstrates feasibility of jet fuel production from microalgae.•A PRO/II case study provides optimal hydrotreating conditions for making Jet B fuel.•H2 recovery from reforming of byproduct adds 7.5–15% to the product value.•Cheap CO2, H2O and nutrient resources are essential for economic feasibility. Microalgae’s aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II’s thermodynamic data manager. Hydrotreating is analyzed within PRO/II’s case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming.</description><subject>Air pollution</subject><subject>Aircraft</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biotechnology - methods</subject><subject>Combustion</subject><subject>Computer Simulation</subject><subject>Conversion</subject><subject>Cooling towers</subject><subject>Distillation</subject><subject>Economics</subject><subject>Flotation</subject><subject>Freezing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrocarbons - metabolism</subject><subject>Jet fuel</subject><subject>Jet fuels</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>Process design</subject><subject>Reference Standards</subject><subject>Simulation</subject><subject>Specific Gravity</subject><subject>Temperature</subject><subject>Thermolysis</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EotvCX6h8QeKSMHYcf3ACrYAiVYIDnC3HGRevkrjYSaX-e1ztFo7lNJfnnXk1DyGXDFoGTL47tENMeUX_q-XARAt9C4Y_IzumVddwo-RzsgMjodE9F2fkvJQDAHRM8ZfkjAtjVKfMjuz3abnDXGJaaAp0jj4nN904pGuiB1xp2HB6T7_n5LEUOmKJNwt1y0hLnLfJrTX4irwIbir4-jQvyM_Pn37sr5rrb1--7j9eN15IsTbjgJwFCdIILTkDh2I0XKDRQaLUIAcByI3jIqA3nR-lNiC5D1rhIIfQXZC3x723Of3esKx2jsXjNLkF01Ysk4JzpYXpnkZ7CYyxHv4HrXU7BUJUVB7R-qRSMgZ7m-Ps8r1lYB-02IN91GIftFjobdVSg5enG9sw4_g39uihAm9OgCveTSG7xcfyj9OS9b1Qlftw5LD--S5itsVHXDyOMaNf7ZjiU13-AF0HrSU</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wang, Hui-Yuan</creator><creator>Bluck, David</creator><creator>Van Wie, Bernard J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20140901</creationdate><title>Conversion of microalgae to jet fuel: Process design and simulation</title><author>Wang, Hui-Yuan ; Bluck, David ; Van Wie, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air pollution</topic><topic>Aircraft</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biotechnology - methods</topic><topic>Combustion</topic><topic>Computer Simulation</topic><topic>Conversion</topic><topic>Cooling towers</topic><topic>Distillation</topic><topic>Economics</topic><topic>Flotation</topic><topic>Freezing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrocarbons - metabolism</topic><topic>Jet fuel</topic><topic>Jet fuels</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>Process design</topic><topic>Reference Standards</topic><topic>Simulation</topic><topic>Specific Gravity</topic><topic>Temperature</topic><topic>Thermolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui-Yuan</creatorcontrib><creatorcontrib>Bluck, David</creatorcontrib><creatorcontrib>Van Wie, Bernard J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui-Yuan</au><au>Bluck, David</au><au>Van Wie, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of microalgae to jet fuel: Process design and simulation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>167</volume><spage>349</spage><epage>357</epage><pages>349-357</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Simulation of microalgae conversion to jet fuel (trademarks from Invensys, micrograph from Wikipedia, jet from Microsoft Clip Art, each of which is pre-authorized for reuse). [Display omitted] •The utility of PRO/II for simulating biomass related processes is established.•PRO/II simulation demonstrates feasibility of jet fuel production from microalgae.•A PRO/II case study provides optimal hydrotreating conditions for making Jet B fuel.•H2 recovery from reforming of byproduct adds 7.5–15% to the product value.•Cheap CO2, H2O and nutrient resources are essential for economic feasibility. Microalgae’s aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II’s thermodynamic data manager. Hydrotreating is analyzed within PRO/II’s case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24997379</pmid><doi>10.1016/j.biortech.2014.05.092</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2014-09, Vol.167, p.349-357
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1642278493
source ScienceDirect Journals
subjects Air pollution
Aircraft
Biological and medical sciences
Biomass
Biomass burning
Biotechnology - methods
Combustion
Computer Simulation
Conversion
Cooling towers
Distillation
Economics
Flotation
Freezing
Fundamental and applied biological sciences. Psychology
Hydrocarbons - metabolism
Jet fuel
Jet fuels
Microalgae
Microalgae - metabolism
Process design
Reference Standards
Simulation
Specific Gravity
Temperature
Thermolysis
title Conversion of microalgae to jet fuel: Process design and simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20microalgae%20to%20jet%20fuel:%20Process%20design%20and%20simulation&rft.jtitle=Bioresource%20technology&rft.au=Wang,%20Hui-Yuan&rft.date=2014-09-01&rft.volume=167&rft.spage=349&rft.epage=357&rft.pages=349-357&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2014.05.092&rft_dat=%3Cproquest_cross%3E1548637044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-dbe21f6069486210ae4d924e98f6e6806b40e29a24fec93cd689062cf87eb6bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1548637044&rft_id=info:pmid/24997379&rfr_iscdi=true