Loading…
Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial
A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties an...
Saved in:
Published in: | Journal of geophysical research. Earth surface 2013-12, Vol.118 (4), p.2365-2379 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933 |
---|---|
cites | |
container_end_page | 2379 |
container_issue | 4 |
container_start_page | 2365 |
container_title | Journal of geophysical research. Earth surface |
container_volume | 118 |
creator | Taylor, Alan E. Dallimore, S. R. Hill, P. R. Issler, D. R. Blasco, S. Wright, F. |
description | A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body.
Key Points
Offshore permafrost is modeled considering geology, sea level and paleoclimate
Permafrost extends to the ~95 m isobath from modeling and geophysical evidence
Upper permafrost surface is depressed by the seasonal Mackenzie River outflow |
doi_str_mv | 10.1002/2013JF002859 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642282220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642282220</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhiNUpCLg1gewhCr10MDYjuP4WFbswmoFEm1VbtZsdrKYOgnYiYC3x7BohXqpLzP65_tnNJ4s-8LhmAOIEwFczqcpq5TZyfYEL01ugPNP2xzk5-wwxjtIr0oSF3uZuxxbCq5Gz9p-RZ71DRtuia2pTyG0SQ-0di2xvnsrnBKOTR8G9vOWfPOdYagHV7MJdrhCFl1X0xu3wDiwi26gsPZYO_QH2W6DPtLhe9zPfk_Pfk3O88XV7GLyY5FjoUHlK6GBuKKykaDK5YobJUQDQqE0JFAraYCk0FovifTSaNTJVhUgAdNOUu5n3zZ970P_MFIcbOtiTd5jR_0YLS8LISohBPwfVVBKUxn5ih79g971Y-jSIqmhrAoBuioT9fWdwpi-tAnY1S7a--BaDM82jQXghUic3HCPztPzts7Bvp7Sfjylnc-up0koVXLlG5eLAz1tXRj-2lJLreyfy5md3Gh1Or9Z2EK-APVAnaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638420786</pqid></control><display><type>article</type><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</creator><creatorcontrib>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</creatorcontrib><description>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body.
Key Points
Offshore permafrost is modeled considering geology, sea level and paleoclimate
Permafrost extends to the ~95 m isobath from modeling and geophysical evidence
Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1002/2013JF002859</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Beaufort Sea ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; ice-bonded permafrost ; Mackenzie Delta ; Mackenzie River plume ; Marine and continental quaternary ; Mathematical models ; Oceans ; Offshore ; Offshore engineering ; offshore permafrost ; Offshore structures ; Paleoclimate ; Permafrost ; Pleistocene ; Rivers ; Sea level ; Sea level rise ; Shelves ; Soil degradation ; Surficial geology ; Water outflow</subject><ispartof>Journal of geophysical research. Earth surface, 2013-12, Vol.118 (4), p.2365-2379</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JF002859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JF002859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11494,27903,27904,46446,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28200142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Alan E.</creatorcontrib><creatorcontrib>Dallimore, S. R.</creatorcontrib><creatorcontrib>Hill, P. R.</creatorcontrib><creatorcontrib>Issler, D. R.</creatorcontrib><creatorcontrib>Blasco, S.</creatorcontrib><creatorcontrib>Wright, F.</creatorcontrib><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><title>Journal of geophysical research. Earth surface</title><addtitle>J. Geophys. Res. Earth Surf</addtitle><description>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body.
Key Points
Offshore permafrost is modeled considering geology, sea level and paleoclimate
Permafrost extends to the ~95 m isobath from modeling and geophysical evidence
Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</description><subject>Beaufort Sea</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>ice-bonded permafrost</subject><subject>Mackenzie Delta</subject><subject>Mackenzie River plume</subject><subject>Marine and continental quaternary</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>Offshore</subject><subject>Offshore engineering</subject><subject>offshore permafrost</subject><subject>Offshore structures</subject><subject>Paleoclimate</subject><subject>Permafrost</subject><subject>Pleistocene</subject><subject>Rivers</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Shelves</subject><subject>Soil degradation</subject><subject>Surficial geology</subject><subject>Water outflow</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhiNUpCLg1gewhCr10MDYjuP4WFbswmoFEm1VbtZsdrKYOgnYiYC3x7BohXqpLzP65_tnNJ4s-8LhmAOIEwFczqcpq5TZyfYEL01ugPNP2xzk5-wwxjtIr0oSF3uZuxxbCq5Gz9p-RZ71DRtuia2pTyG0SQ-0di2xvnsrnBKOTR8G9vOWfPOdYagHV7MJdrhCFl1X0xu3wDiwi26gsPZYO_QH2W6DPtLhe9zPfk_Pfk3O88XV7GLyY5FjoUHlK6GBuKKykaDK5YobJUQDQqE0JFAraYCk0FovifTSaNTJVhUgAdNOUu5n3zZ970P_MFIcbOtiTd5jR_0YLS8LISohBPwfVVBKUxn5ih79g971Y-jSIqmhrAoBuioT9fWdwpi-tAnY1S7a--BaDM82jQXghUic3HCPztPzts7Bvp7Sfjylnc-up0koVXLlG5eLAz1tXRj-2lJLreyfy5md3Gh1Or9Z2EK-APVAnaM</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Taylor, Alan E.</creator><creator>Dallimore, S. R.</creator><creator>Hill, P. R.</creator><creator>Issler, D. R.</creator><creator>Blasco, S.</creator><creator>Wright, F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7TN</scope></search><sort><creationdate>201312</creationdate><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><author>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beaufort Sea</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>ice-bonded permafrost</topic><topic>Mackenzie Delta</topic><topic>Mackenzie River plume</topic><topic>Marine and continental quaternary</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>Offshore</topic><topic>Offshore engineering</topic><topic>offshore permafrost</topic><topic>Offshore structures</topic><topic>Paleoclimate</topic><topic>Permafrost</topic><topic>Pleistocene</topic><topic>Rivers</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Shelves</topic><topic>Soil degradation</topic><topic>Surficial geology</topic><topic>Water outflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Alan E.</creatorcontrib><creatorcontrib>Dallimore, S. R.</creatorcontrib><creatorcontrib>Hill, P. R.</creatorcontrib><creatorcontrib>Issler, D. R.</creatorcontrib><creatorcontrib>Blasco, S.</creatorcontrib><creatorcontrib>Wright, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Alan E.</au><au>Dallimore, S. R.</au><au>Hill, P. R.</au><au>Issler, D. R.</au><au>Blasco, S.</au><au>Wright, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><addtitle>J. Geophys. Res. Earth Surf</addtitle><date>2013-12</date><risdate>2013</risdate><volume>118</volume><issue>4</issue><spage>2365</spage><epage>2379</epage><pages>2365-2379</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body.
Key Points
Offshore permafrost is modeled considering geology, sea level and paleoclimate
Permafrost extends to the ~95 m isobath from modeling and geophysical evidence
Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JF002859</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9003 |
ispartof | Journal of geophysical research. Earth surface, 2013-12, Vol.118 (4), p.2365-2379 |
issn | 2169-9003 2169-9011 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642282220 |
source | Wiley; Wiley-Blackwell AGU Digital Archive |
subjects | Beaufort Sea Earth sciences Earth, ocean, space Exact sciences and technology Geophysics ice-bonded permafrost Mackenzie Delta Mackenzie River plume Marine and continental quaternary Mathematical models Oceans Offshore Offshore engineering offshore permafrost Offshore structures Paleoclimate Permafrost Pleistocene Rivers Sea level Sea level rise Shelves Soil degradation Surficial geology Water outflow |
title | Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20model%20of%20the%20geothermal%20regime%20on%20the%20Beaufort%20Shelf,%20arctic%20Canada%20since%20the%20Last%20Interglacial&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Taylor,%20Alan%20E.&rft.date=2013-12&rft.volume=118&rft.issue=4&rft.spage=2365&rft.epage=2379&rft.pages=2365-2379&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1002/2013JF002859&rft_dat=%3Cproquest_pasca%3E1642282220%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638420786&rft_id=info:pmid/&rfr_iscdi=true |