Loading…

Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial

A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Earth surface 2013-12, Vol.118 (4), p.2365-2379
Main Authors: Taylor, Alan E., Dallimore, S. R., Hill, P. R., Issler, D. R., Blasco, S., Wright, F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933
cites
container_end_page 2379
container_issue 4
container_start_page 2365
container_title Journal of geophysical research. Earth surface
container_volume 118
creator Taylor, Alan E.
Dallimore, S. R.
Hill, P. R.
Issler, D. R.
Blasco, S.
Wright, F.
description A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body. Key Points Offshore permafrost is modeled considering geology, sea level and paleoclimate Permafrost extends to the ~95 m isobath from modeling and geophysical evidence Upper permafrost surface is depressed by the seasonal Mackenzie River outflow
doi_str_mv 10.1002/2013JF002859
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642282220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642282220</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhiNUpCLg1gewhCr10MDYjuP4WFbswmoFEm1VbtZsdrKYOgnYiYC3x7BohXqpLzP65_tnNJ4s-8LhmAOIEwFczqcpq5TZyfYEL01ugPNP2xzk5-wwxjtIr0oSF3uZuxxbCq5Gz9p-RZ71DRtuia2pTyG0SQ-0di2xvnsrnBKOTR8G9vOWfPOdYagHV7MJdrhCFl1X0xu3wDiwi26gsPZYO_QH2W6DPtLhe9zPfk_Pfk3O88XV7GLyY5FjoUHlK6GBuKKykaDK5YobJUQDQqE0JFAraYCk0FovifTSaNTJVhUgAdNOUu5n3zZ970P_MFIcbOtiTd5jR_0YLS8LISohBPwfVVBKUxn5ih79g971Y-jSIqmhrAoBuioT9fWdwpi-tAnY1S7a--BaDM82jQXghUic3HCPztPzts7Bvp7Sfjylnc-up0koVXLlG5eLAz1tXRj-2lJLreyfy5md3Gh1Or9Z2EK-APVAnaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638420786</pqid></control><display><type>article</type><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</creator><creatorcontrib>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</creatorcontrib><description>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body. Key Points Offshore permafrost is modeled considering geology, sea level and paleoclimate Permafrost extends to the ~95 m isobath from modeling and geophysical evidence Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1002/2013JF002859</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Beaufort Sea ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; ice-bonded permafrost ; Mackenzie Delta ; Mackenzie River plume ; Marine and continental quaternary ; Mathematical models ; Oceans ; Offshore ; Offshore engineering ; offshore permafrost ; Offshore structures ; Paleoclimate ; Permafrost ; Pleistocene ; Rivers ; Sea level ; Sea level rise ; Shelves ; Soil degradation ; Surficial geology ; Water outflow</subject><ispartof>Journal of geophysical research. Earth surface, 2013-12, Vol.118 (4), p.2365-2379</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JF002859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JF002859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11494,27903,27904,46446,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28200142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Alan E.</creatorcontrib><creatorcontrib>Dallimore, S. R.</creatorcontrib><creatorcontrib>Hill, P. R.</creatorcontrib><creatorcontrib>Issler, D. R.</creatorcontrib><creatorcontrib>Blasco, S.</creatorcontrib><creatorcontrib>Wright, F.</creatorcontrib><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><title>Journal of geophysical research. Earth surface</title><addtitle>J. Geophys. Res. Earth Surf</addtitle><description>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body. Key Points Offshore permafrost is modeled considering geology, sea level and paleoclimate Permafrost extends to the ~95 m isobath from modeling and geophysical evidence Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</description><subject>Beaufort Sea</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>ice-bonded permafrost</subject><subject>Mackenzie Delta</subject><subject>Mackenzie River plume</subject><subject>Marine and continental quaternary</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>Offshore</subject><subject>Offshore engineering</subject><subject>offshore permafrost</subject><subject>Offshore structures</subject><subject>Paleoclimate</subject><subject>Permafrost</subject><subject>Pleistocene</subject><subject>Rivers</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Shelves</subject><subject>Soil degradation</subject><subject>Surficial geology</subject><subject>Water outflow</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhiNUpCLg1gewhCr10MDYjuP4WFbswmoFEm1VbtZsdrKYOgnYiYC3x7BohXqpLzP65_tnNJ4s-8LhmAOIEwFczqcpq5TZyfYEL01ugPNP2xzk5-wwxjtIr0oSF3uZuxxbCq5Gz9p-RZ71DRtuia2pTyG0SQ-0di2xvnsrnBKOTR8G9vOWfPOdYagHV7MJdrhCFl1X0xu3wDiwi26gsPZYO_QH2W6DPtLhe9zPfk_Pfk3O88XV7GLyY5FjoUHlK6GBuKKykaDK5YobJUQDQqE0JFAraYCk0FovifTSaNTJVhUgAdNOUu5n3zZ970P_MFIcbOtiTd5jR_0YLS8LISohBPwfVVBKUxn5ih79g971Y-jSIqmhrAoBuioT9fWdwpi-tAnY1S7a--BaDM82jQXghUic3HCPztPzts7Bvp7Sfjylnc-up0koVXLlG5eLAz1tXRj-2lJLreyfy5md3Gh1Or9Z2EK-APVAnaM</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Taylor, Alan E.</creator><creator>Dallimore, S. R.</creator><creator>Hill, P. R.</creator><creator>Issler, D. R.</creator><creator>Blasco, S.</creator><creator>Wright, F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7TN</scope></search><sort><creationdate>201312</creationdate><title>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</title><author>Taylor, Alan E. ; Dallimore, S. R. ; Hill, P. R. ; Issler, D. R. ; Blasco, S. ; Wright, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beaufort Sea</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>ice-bonded permafrost</topic><topic>Mackenzie Delta</topic><topic>Mackenzie River plume</topic><topic>Marine and continental quaternary</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>Offshore</topic><topic>Offshore engineering</topic><topic>offshore permafrost</topic><topic>Offshore structures</topic><topic>Paleoclimate</topic><topic>Permafrost</topic><topic>Pleistocene</topic><topic>Rivers</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Shelves</topic><topic>Soil degradation</topic><topic>Surficial geology</topic><topic>Water outflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Alan E.</creatorcontrib><creatorcontrib>Dallimore, S. R.</creatorcontrib><creatorcontrib>Hill, P. R.</creatorcontrib><creatorcontrib>Issler, D. R.</creatorcontrib><creatorcontrib>Blasco, S.</creatorcontrib><creatorcontrib>Wright, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Alan E.</au><au>Dallimore, S. R.</au><au>Hill, P. R.</au><au>Issler, D. R.</au><au>Blasco, S.</au><au>Wright, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><addtitle>J. Geophys. Res. Earth Surf</addtitle><date>2013-12</date><risdate>2013</risdate><volume>118</volume><issue>4</issue><spage>2365</spage><epage>2379</epage><pages>2365-2379</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>A finite element geothermal model is developed for the outer Mackenzie Delta‐Beaufort Sea shelf to predict permafrost evolution since the Last Interglacial ~130–116 kaBP(cal). The purpose is to reconcile sparse observations of the depth and extent of ice‐bonded permafrost with sediment properties and the paleoenvironment. Sea level curves determine, as a function of time, areas of the shelf that were subaerially exposed, promoting permafrost aggradation, and areas that were submerged, promoting permafrost degradation. Assuming as a model starting point that a paleoclimate similar to today persisted through the Last Interglacial, permafrost subsequently aggrades in depth and advances seaward from the present shoreline to the shelf/slope bathymetric break by the Last Glacial Maximum (LGM) ~26 kaBP(cal). Modeled permafrost exhibits reduced growth in depth and seaward progression that correlate with early and middle Wisconsin stillstands in sea level. Following the LGM and rise in sea level, offshore permafrost degrades and permafrost base rises ~100 m to its present depth of ~600 m. The offshore limit of modeled ice‐bonded permafrost lies at the ~95 m isobath, within 1 km of the bathymetric shelf/slope break. The model replicates features of offshore permafrost body observed seismically and demonstrates that warm outflow from the Mackenzie River depresses the upper surface of offshore permafrost by tens of meters to the 20 m isobath. Although Pleistocene permafrost predated the Wisconsinan, the model demonstrates that the paleoenvironment of the last 125,000 years is sufficient to develop the depth, seaward extent, and principal features of the permafrost body. Key Points Offshore permafrost is modeled considering geology, sea level and paleoclimate Permafrost extends to the ~95 m isobath from modeling and geophysical evidence Upper permafrost surface is depressed by the seasonal Mackenzie River outflow</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JF002859</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2169-9003
ispartof Journal of geophysical research. Earth surface, 2013-12, Vol.118 (4), p.2365-2379
issn 2169-9003
2169-9011
language eng
recordid cdi_proquest_miscellaneous_1642282220
source Wiley; Wiley-Blackwell AGU Digital Archive
subjects Beaufort Sea
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
ice-bonded permafrost
Mackenzie Delta
Mackenzie River plume
Marine and continental quaternary
Mathematical models
Oceans
Offshore
Offshore engineering
offshore permafrost
Offshore structures
Paleoclimate
Permafrost
Pleistocene
Rivers
Sea level
Sea level rise
Shelves
Soil degradation
Surficial geology
Water outflow
title Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20model%20of%20the%20geothermal%20regime%20on%20the%20Beaufort%20Shelf,%20arctic%20Canada%20since%20the%20Last%20Interglacial&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Taylor,%20Alan%20E.&rft.date=2013-12&rft.volume=118&rft.issue=4&rft.spage=2365&rft.epage=2379&rft.pages=2365-2379&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1002/2013JF002859&rft_dat=%3Cproquest_pasca%3E1642282220%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4705-d270e15e6f3056bd19522f025a39e2a75390e32777bee7b97a770584030a16933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638420786&rft_id=info:pmid/&rfr_iscdi=true