Loading…
Mechanical, morphological, and thermal properties of nanotalc reinforced PA6/SEBS-g-MA composites
ABSTRACT Ternary butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MA) (100/20 w/w) blend with varying content of nanotalc (1, 3, and 5 wt %) were prepared by melt compounding followed by injection molding. Thermal properties were investigated by thermogravimetric analysis (TGA) and the results show that...
Saved in:
Published in: | Journal of applied polymer science 2015-02, Vol.132 (7), p.np-n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Ternary butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MA) (100/20 w/w) blend with varying content of nanotalc (1, 3, and 5 wt %) were prepared by melt compounding followed by injection molding. Thermal properties were investigated by thermogravimetric analysis (TGA) and the results show that the thermal properties of nanocomposites are slightly improved by the addition of nanotalc content. The morphology of nanocomposites using wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) revealed the delamination of talc layers in the ternary nanocomposites. The dynamic mechanical properties of the samples were analyzed by using dynamic mechanical thermal analyzer (DMTA). The results show that the storage modulus of the blend monotonically increased while tan δ curve show the diffuse pattern with the nanotalc content. The mechanical properties of PA6/SEBS‐g‐MA nanocomposites were studied by tensile, flexural, and impact tests. The tensile and flexural properties continuously increased while izod impact and elongation‐at‐break decreased with nanotalc content. Various theoretical predictive models were used to correlate tensile modulus with the experimental data. The experimental data shows the positive deviation with the applied models. Bela Pukanszky model has been used to calculate the value of parameter B by employing tensile strength data. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41381. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.41381 |