Loading…

NO PLIF imaging in the CUBRC 48-inch shock tunnel

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center’s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser–based high frame rate imaging system. Sequences of up to ten...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2012-12, Vol.53 (6), p.1637-1646
Main Authors: Jiang, N., Bruzzese, J., Patton, R., Sutton, J., Yentsch, R., Gaitonde, D. V., Lempert, W. R., Miller, J. D., Meyer, T. R., Parker, R., Wadham, T., Holden, M., Danehy, P. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513
cites cdi_FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513
container_end_page 1646
container_issue 6
container_start_page 1637
container_title Experiments in fluids
container_volume 53
creator Jiang, N.
Bruzzese, J.
Patton, R.
Sutton, J.
Yentsch, R.
Gaitonde, D. V.
Lempert, W. R.
Miller, J. D.
Meyer, T. R.
Parker, R.
Wadham, T.
Holden, M.
Danehy, P. M.
description Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center’s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser–based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.
doi_str_mv 10.1007/s00348-012-1381-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642288458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512321504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwA7j1gsSlYCdpPo5QMZg0MYTGOcqydOvo0tF0B_49mTZxhJNt-fEr-SHkGuEOAeR9BGBc5YA0R6YwFydkgJylCZGfkgFIynKuBD8nFzGuAbDQoAYEX6fZ22Q8yuqNXdZhmdUh61c-Kz8e38ssJdbBrbK4at1n1u9C8M0lOatsE_3VsQ7JbPQ0K1_yyfR5XD5Mcsep7HMvUWpmU6_lXFUgtRBQMKvmqKEoAOhCa6F5ZbV0ysqFQ105oS3XihfIhuT2ELvt2q-dj73Z1NH5prHBt7toUHBKVULV_2iBlFEsgCcUD6jr2hg7X5ltlz7vvg2C2Ys0B5EmiTR7kUakm5tjvI3ONlVng6vj7yEVQnHGi8TRAxfTKix9Z9btrgvJ0R_hP3FbfSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512321504</pqid></control><display><type>article</type><title>NO PLIF imaging in the CUBRC 48-inch shock tunnel</title><source>Springer Link</source><creator>Jiang, N. ; Bruzzese, J. ; Patton, R. ; Sutton, J. ; Yentsch, R. ; Gaitonde, D. V. ; Lempert, W. R. ; Miller, J. D. ; Meyer, T. R. ; Parker, R. ; Wadham, T. ; Holden, M. ; Danehy, P. M.</creator><creatorcontrib>Jiang, N. ; Bruzzese, J. ; Patton, R. ; Sutton, J. ; Yentsch, R. ; Gaitonde, D. V. ; Lempert, W. R. ; Miller, J. D. ; Meyer, T. R. ; Parker, R. ; Wadham, T. ; Holden, M. ; Danehy, P. M.</creatorcontrib><description>Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center’s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser–based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-012-1381-6</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Bursting ; Computational fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Fluids ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Imaging ; Instrumentation for fluid dynamics ; Physics ; Research Article ; Shock tunnels ; Spreading</subject><ispartof>Experiments in fluids, 2012-12, Vol.53 (6), p.1637-1646</ispartof><rights>Springer-Verlag 2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513</citedby><cites>FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26684345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, N.</creatorcontrib><creatorcontrib>Bruzzese, J.</creatorcontrib><creatorcontrib>Patton, R.</creatorcontrib><creatorcontrib>Sutton, J.</creatorcontrib><creatorcontrib>Yentsch, R.</creatorcontrib><creatorcontrib>Gaitonde, D. V.</creatorcontrib><creatorcontrib>Lempert, W. R.</creatorcontrib><creatorcontrib>Miller, J. D.</creatorcontrib><creatorcontrib>Meyer, T. R.</creatorcontrib><creatorcontrib>Parker, R.</creatorcontrib><creatorcontrib>Wadham, T.</creatorcontrib><creatorcontrib>Holden, M.</creatorcontrib><creatorcontrib>Danehy, P. M.</creatorcontrib><title>NO PLIF imaging in the CUBRC 48-inch shock tunnel</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center’s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser–based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.</description><subject>Applied sciences</subject><subject>Bursting</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Imaging</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Research Article</subject><subject>Shock tunnels</subject><subject>Spreading</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwA7j1gsSlYCdpPo5QMZg0MYTGOcqydOvo0tF0B_49mTZxhJNt-fEr-SHkGuEOAeR9BGBc5YA0R6YwFydkgJylCZGfkgFIynKuBD8nFzGuAbDQoAYEX6fZ22Q8yuqNXdZhmdUh61c-Kz8e38ssJdbBrbK4at1n1u9C8M0lOatsE_3VsQ7JbPQ0K1_yyfR5XD5Mcsep7HMvUWpmU6_lXFUgtRBQMKvmqKEoAOhCa6F5ZbV0ysqFQ105oS3XihfIhuT2ELvt2q-dj73Z1NH5prHBt7toUHBKVULV_2iBlFEsgCcUD6jr2hg7X5ltlz7vvg2C2Ys0B5EmiTR7kUakm5tjvI3ONlVng6vj7yEVQnHGi8TRAxfTKix9Z9btrgvJ0R_hP3FbfSE</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Jiang, N.</creator><creator>Bruzzese, J.</creator><creator>Patton, R.</creator><creator>Sutton, J.</creator><creator>Yentsch, R.</creator><creator>Gaitonde, D. V.</creator><creator>Lempert, W. R.</creator><creator>Miller, J. D.</creator><creator>Meyer, T. R.</creator><creator>Parker, R.</creator><creator>Wadham, T.</creator><creator>Holden, M.</creator><creator>Danehy, P. M.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>NO PLIF imaging in the CUBRC 48-inch shock tunnel</title><author>Jiang, N. ; Bruzzese, J. ; Patton, R. ; Sutton, J. ; Yentsch, R. ; Gaitonde, D. V. ; Lempert, W. R. ; Miller, J. D. ; Meyer, T. R. ; Parker, R. ; Wadham, T. ; Holden, M. ; Danehy, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bursting</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Imaging</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Research Article</topic><topic>Shock tunnels</topic><topic>Spreading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, N.</creatorcontrib><creatorcontrib>Bruzzese, J.</creatorcontrib><creatorcontrib>Patton, R.</creatorcontrib><creatorcontrib>Sutton, J.</creatorcontrib><creatorcontrib>Yentsch, R.</creatorcontrib><creatorcontrib>Gaitonde, D. V.</creatorcontrib><creatorcontrib>Lempert, W. R.</creatorcontrib><creatorcontrib>Miller, J. D.</creatorcontrib><creatorcontrib>Meyer, T. R.</creatorcontrib><creatorcontrib>Parker, R.</creatorcontrib><creatorcontrib>Wadham, T.</creatorcontrib><creatorcontrib>Holden, M.</creatorcontrib><creatorcontrib>Danehy, P. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, N.</au><au>Bruzzese, J.</au><au>Patton, R.</au><au>Sutton, J.</au><au>Yentsch, R.</au><au>Gaitonde, D. V.</au><au>Lempert, W. R.</au><au>Miller, J. D.</au><au>Meyer, T. R.</au><au>Parker, R.</au><au>Wadham, T.</au><au>Holden, M.</au><au>Danehy, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NO PLIF imaging in the CUBRC 48-inch shock tunnel</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>53</volume><issue>6</issue><spage>1637</spage><epage>1646</epage><pages>1637-1646</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center’s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser–based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-012-1381-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2012-12, Vol.53 (6), p.1637-1646
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_1642288458
source Springer Link
subjects Applied sciences
Bursting
Computational fluid dynamics
Energy
Energy. Thermal use of fuels
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Fluids
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Imaging
Instrumentation for fluid dynamics
Physics
Research Article
Shock tunnels
Spreading
title NO PLIF imaging in the CUBRC 48-inch shock tunnel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NO%20PLIF%20imaging%20in%20the%20CUBRC%2048-inch%20shock%20tunnel&rft.jtitle=Experiments%20in%20fluids&rft.au=Jiang,%20N.&rft.date=2012-12-01&rft.volume=53&rft.issue=6&rft.spage=1637&rft.epage=1646&rft.pages=1637-1646&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-012-1381-6&rft_dat=%3Cproquest_cross%3E1512321504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-e71793a42797b8f07966053a8b19055002d99694fa97c8a7dc19fc69a4984513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512321504&rft_id=info:pmid/&rfr_iscdi=true