Loading…

Development of steel dampers for bridges to allow large displacement through a vertical free mechanism

Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake Engineering and Engineering Vibration 2014-09, Vol.13 (3), p.375-388
Main Authors: Pan, Peng, Yan, Hong, Wang, Tao, Xu, Peizhen, Xie, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.
ISSN:1671-3664
1993-503X
DOI:10.1007/s11803-014-0249-6