Loading…
Error Covariance Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere and a Simple Pycnocline Ocean Model
Coupled data assimilation uses a coupled model consisting of multiple time-scale media to extract information from observations that are available in one or more media. Because of the instantaneous exchanges of information among the coupled media, coupled data assimilation is expected to produce sel...
Saved in:
Published in: | Journal of climate 2013-12, Vol.26 (24), p.10218-10231 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coupled data assimilation uses a coupled model consisting of multiple time-scale media to extract information from observations that are available in one or more media. Because of the instantaneous exchanges of information among the coupled media, coupled data assimilation is expected to produce self-consistent and physically balanced coupled state estimates and optimal initialization for coupled model predictions. It is also expected that applying coupling error covariance between two media into observational adjustments in these media can provide direct observational impacts crossing the media and thereby improve the assimilation quality. However, because of the different time scales of variability in different media, accurately evaluating the error covariance between two variables residing in different media is usually very difficult. Using an ensemble filter together with a simple coupled model consisting of a Lorenz atmosphere and a pycnocline ocean model, which characterizes the interaction of multiple time-scale media in the climate system, the impact of the accuracy of coupling error covariance on the quality of coupled data assimilation is studied. Results show that it requires a large ensemble size to improve the assimilation quality by applying coupling error covariance in an ensemble coupled data assimilation system, and the poorly estimated coupling error covariance may otherwise degrade the assimilation quality. It is also found that a fast-varying medium has more difficulty being improved using observations in slow-varying media by applying coupling error covariance because the linear regression from the observational increment in slow-varying media has difficulty representing the high-frequency information of the fast-varying medium. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-13-00236.1 |